Skip to main content

A New Two-Stage Aluminothermic Reduction Process for Preparation of Ti/Ti-Al Alloys

  • Conference paper
  • First Online:

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

This work presents a two-stage aluminothermic reduction process for preparing Ti and Ti-Al alloys using Na2TiF6. Al-Ti master alloy and pure cryolite as co-products could be obtained. After the first stage reduction, O content of the metal production (particle size of less than 74 μm) was below about 0.35 wt%. Ti (IV), Ti (III) and Ti (0) existed in the Ti-containing cryolite, and the content was about 3 to ~10 wt%. After secondary reduction, Ti content of the clean cryolite was reduced to 0.002 wt%. The Al-Ti master alloy obtained by secondary reduction was composed of Al and TiAl3. A cyclical production process is founded by Al-Ti master alloy returned to the next first and secondary reduction process as reductant, in which Ti and Al are almost 100% recyclable.

This is a preview of subscription content, log in via an institution.

References

  1. K. Zhao, Y.W. Wang, J.P. Peng, Y.Z. Di, K.J. Liu, N.X. Feng, Formation of Ti or TiC nanopowder from TiO2 and carbon powders by electrolysis in molten NaCl–KCl. RSC Adv. 6, 8644–8650 (2016)

    Google Scholar 

  2. B. Wang, K.R. Liu, J.S. Chen, Reaction mechanism of preparation of titanium by electro-deoxidation in molten salt. Trans. Nonferrous Met. Soc. China 21, 2327–2331 (2011)

    Article  Google Scholar 

  3. D.S.M. Vishnu, N. Sanil, L. Shakila, R. Sudha, K.S. Mohandas, K. Nagarajan, Electrochemical reduction of TiO2 powders in molten calcium chloride. Electrochim. Acta 159, 124–130 (2015)

    Google Scholar 

  4. D.B. Lee, S.W. Woo, Effect of Cr, Nb, Mn, V, W and Si on high temperature oxidation of TiAl alloys. Met. Mater. Int. 11, 141–147 (2005)

    Article  Google Scholar 

  5. S.W. Kim, J.K. Hong, Y.S. Na, J.T. Yeom, S.E. Kim, Development of TiAl alloys with excellent mechanical properties and oxidation resistance. Mater. Des. 54, 814–819 (2014)

    Article  Google Scholar 

  6. H. Jabbar, J.P. Monchoux, M. Thomas, F. Pyczak, A. Couret, Improvement of the creep properties of TiAl alloys densified by spark plasma sintering. Intermetallics 46, 1–3 (2014)

    Article  Google Scholar 

  7. W.J. Kroll, The production of ductile titanium. Trans. Am. Electrochem. Soc. 78, 35–47 (1940)

    Article  Google Scholar 

  8. G.Z. Chen, D.J. Fray, T.W. Farthing, Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature 407, 361–364 (2000)

    Article  Google Scholar 

  9. M.V. Ginatta, Why produce titanium by EW. JOM 52, 18–20 (2000)

    Article  Google Scholar 

  10. R.O. Suzuki, Calciothermic reduction of TiO2 and in situ electrolysis of CaO in the molten CaCl2. J. Phys. Chem. Solids 66, 461–465 (2005)

    Article  Google Scholar 

  11. A.D. Hartman, S.J. Gerdemann, J.S. Hansen, Producing lower-cost titanium for automotive applications. JOM 50, 16–19 (1998)

    Article  Google Scholar 

  12. T. Uda, T.H. Okabe, Y. Waseda, K.T. Jacob, Contactless electrochemical reduction of titanium (II) chloride by aluminum. Metall. Mater. Trans. B 31, 713–721 (2000)

    Article  Google Scholar 

  13. D.J. Fray, G.Z. Chen, Reduction of titanium and other metal oxides using electro-deoxidation. Mater. Sci. Technol. 20, 295–300 (2004)

    Article  Google Scholar 

  14. K. Ono, R.O. Suzuki, A new concept for producing Ti sponge: calciothermic reduction. JOM 54, 59–61 (2002)

    Article  Google Scholar 

  15. S.Q. Jiao, H.M. Zhu, Electrolysis of Ti2CO solid solution prepared by TiC and TiO2. J. Alloys Compd. 438, 243–246 (2007)

    Article  Google Scholar 

  16. D. Slawomir, N. Małgorzata, P. Marek, C. Stanisław, B. Jerzy, A simple method of synthesis and surface purification of titanium carbide powder. Int. J. Refract. Met. Hard Mater. 38, 87–91 (2013)

    Article  Google Scholar 

  17. A.R. Kamali, H. Razavizadeh, M. Hadavi, A new process for Titanium Aluminides production from TiO2. J. Mater. Sci. Technol. 23, 367–372 (2007)

    Google Scholar 

  18. M. Maeda, T. Yahata, K. Mitugi, T. Ikeda, Aluminothermic reduction of titanium oxide. Mater. Trans. JIM, 34, 599–603 (1993)

    Google Scholar 

  19. Y. Chen, D.D.L. Chung, In situ Al-TiB composite obtained by stir casting. J. Mater. Sci. 31, 311–315 (1996)

    Article  Google Scholar 

  20. J.D. Donaldson, C.P. Squire, The transfer of titanium and boron to aluminium master alloys via Na2TiF6 and NaBF4. J. Mater. Sci. 13, 421–426 (1978)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naixiang Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Zhao, K., Feng, N. (2017). A New Two-Stage Aluminothermic Reduction Process for Preparation of Ti/Ti-Al Alloys. In: Kim, H., Alam, S., Neelameggham, N., Oosterhof, H., Ouchi, T., Guan, X. (eds) Rare Metal Technology 2017. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-51085-9_17

Download citation

Publish with us

Policies and ethics