Skip to main content

Fate, Transport, and Exposure of Emerging and Legacy Contaminants in Karst Systems: State of Knowledge and Uncertainty

  • Conference paper
  • First Online:
Karst Groundwater Contamination and Public Health

Part of the book series: Advances in Karst Science ((AKS))

Abstract

It is well known that the same characteristics that make karst groundwater systems highly productive make them very vulnerable to contamination. Once in the subsurface, many contaminants move along and spread across flow lines, interact with media and environmental compartments, and react with chemical and biological entities. All of these processes occur within a highly dynamic and heterogeneous framework that affects the mobility, persistence, and potential exposure of humans and wildlife. Fundamental knowledge exists on many of these processes, and several predictive and characterization models have been developed and applied to karst systems. Yet tremendous challenges and uncertainty are faced when trying to predict exposure, implement remedial actions, and manage contaminated systems, particularly in a changing world. This paper discusses the state of knowledge, modeling capabilities, and sources of uncertainty when assessing the fate, transport, and exposure of legacy and emerging contaminants in karst systems. Although applicable to many sites, the discussion is framed around particular examples of extensive contamination in the karst region of northern Puerto Rico, and how these compare to more densely lithified karst systems associated with continental karst. It focuses on contaminants related to industrial, agricultural, and personal care activities. Despite the advancements made on understanding and modeling fate and transport processes, large uncertainty remains on source and system characteristics, scale-dependent model applicability, spatiotemporal data resolution, and the effect of hydrologic conditions and anthropogenic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agency for Toxic Substances and Disease Registry (ATSDR). 2016. Priority list of hazardous substances, Retrieved September, 2016 from https://www.atsdr.cdc.gov/spl/index.html.

  • Anaya, A.A., I.Y. Padilla, R. Macchiavelli, D.J. Vesper, J.D. Meeker, and A.N. Alshawabkeh. 2014. Estimating preferential flow in karstic aquifers using statistical mixed models. Groundwater 52 (4): 584–596.

    Article  Google Scholar 

  • Bailly-Comte, V., J.B. Martin, H. Jourde, E.J. Screaton, S. Pistre, and A. Langston. 2010. Water exchange and pressure transfer between conduits and matrix and their influence on hydrodynamics of two karst aquifers with sinking streams. Journal of Hydrology 386 (1–4): 55–66.

    Article  Google Scholar 

  • Carmona De Jesús, M., and I.Y. Padilla. 2015. Characterization of TCE NAPL and Dissolved Phase Transport in Karst Media, Paper H42C-08, American Geophysical Union 2015 Fall Meeting, San Francisco, CA, December 14–18, 2015.

    Google Scholar 

  • Calò, F., and M. Parise. 2009. Waste management and problems of groundwater pollution in karst environments in the context of a post-conflict scenario: The case of Mostar (Bosnia Herzegovina). Habitat International 33 (1): 63–72. doi:10.1016/j.habitatint.2008.05.001.

    Article  Google Scholar 

  • Dverstorp, B., J. Andersson, and W. Nordqvist. 1992. Discrete fracture network interpretation of field tracer migration in sparsely fractured rock. Water Resources Research 28: 2327–2343.

    Article  Google Scholar 

  • Dickson, S., and N. Thomson. 2003. Dissolution of entrapped DNAPLs in variable aperture fractures: Experimental data and empirical model. Environmental Science and Technology 37: 4128–4137.

    Article  Google Scholar 

  • Einsiedl, F., M. Radke, and P. Maloszewski. 2010. Occurrence and transport of pharmaceuticals in a karst groundwater system. Journal of Contaminant Hydrology 117 (1–4): 26–36. doi:10.1016/j.jconhyd.2010.05.008.

    Article  Google Scholar 

  • Field, M.S., and P.F. Pinsky. 2000. A two-region non-equilibrium model for solute transport in solution conduits in karstic aquifers. Journal of Contaminant Hydrology 44: 329–351.

    Article  Google Scholar 

  • Ford, D.C., and P. Williams. 2007. Karst, Hydrogeology & Geomorphology. Chichester, UK: John Wiley & Sons.

    Book  Google Scholar 

  • Forand, S.P., E.L. Lewis-Michl, and M.I. Gomez. 2012. Adverse birth outcomes and maternal exposure to trichloroethylene and tetrachloroethylene through soil vapor intrusion in New York State. Environmental Health Perspectives 130 (4): 616–621.

    Google Scholar 

  • Ghasemizadeh, R., F. Hellweger, C. Butscher, I. Padilla, D. Vesper, M. Field, and A. Alshawabkeh. 2012. Review: Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Aquifer of Puerto Rico. Hydrogeology Journal 20 (8): 1441–1461.

    Article  Google Scholar 

  • Ghasemizadeh R, X. Yu, C. Butscher, F. Hellweger F, I. Padilla, and A. Alshawabkeh. 2015. Equivalent porous media (EPM) simulation of groundwater hydraulics and contaminant transport in karst aquifers. PLoS One 10(9): e0138954. doi:10.1371/journal.pone.0138954. https://www.researchgate.net/publication/282345487_Equivalent_Porous_Media_%28EPM%29_Simulation_of_Groundwater_Hydraulics_and_Contaminant_Transport_in_Karst_Aquifers.

  • Geyer, T., S. Birk, T. Licha, R. Liedl, and M. Sauter. 2007. Multitracertest approach to characterize reactive transport in karst aquifers. Ground Water 45 (1): 36–45.

    Article  Google Scholar 

  • Goldscheider, N. 2016. Karst and alpine hydrogeology. Karlsruhe Institute of Technology (KIT).Retrieved on December, 2015 from https://www.agw.kit.edu/english/3851.php.

  • Göppert, N., and N. Goldscheider. 2008. Solute and colloid transport in karst conduits under low- and high-flow conditions. Ground Water 46 (1): 61–68.

    Google Scholar 

  • Green, R., S. Painter, A. Sun, and S. Wort. 2006. Groundwater contamination in karst terranes. Water, Air, Soil Pollut 6 (1–2): 157–170. doi:10.1007/s11267-005-9004-3.

    Article  Google Scholar 

  • Guzmán-Ríos S, R. García, and A. Avilés. 1986. Reconnaissance of volatile synthetic organic chemicals at public water supply wells throughout Puerto Rico, November 1984-May 1985. U.S. Geological Survey Publication Open-File Report 86-63.

    Google Scholar 

  • Guzzella, L., F. Pozzoni, and G. Giuliano. 2005. Herbicide contamination of surficial groundwater in Northern Italy. Environmental Pollution 142 (2): 344–353. doi:10.1016/j.envpol.2005.10.037.

    Article  Google Scholar 

  • Hartmann, A., N. Goldscheider, T. Wagener, J. Lange, and M. Weiler. 2014. Karst water resources in a changing world: Review of hydrological modeling approaches. Reviews of Geophysics 52: 1–25. doi:10.1002/2013RG000443.

    Article  Google Scholar 

  • Hmielowski, T.2016. Emerging contaminants in the agricultural systems. Crop, Soil, Agronomy (CSA) News 61 (8): 4–9. doi:10.2134/csa1016-61-8-1.

  • Hunter, J.M., and S.I. Arbona. 1995. Paradise lost: An introduction to the geography of water pollution in Puerto Rico. Social Science and Medicine 40 (10): 1331–1355.

    Article  Google Scholar 

  • Hutchinson, T.H., B.P. Lyons, J.E. Thain, and R.J. Law. 2013. Evaluating legacy contaminants and emerging chemicals in marine environments using adverse outcome pathways and biological effects-directed analysis. Marine Pollution Bulletin 74 (2): 517–525. doi:10.1016/j.marpolbul.2013.06.012.

    Article  Google Scholar 

  • Irizarry, C. 2014. Historical assessment of chlorinated volatile organic compounds (CVOCs) and phthalates contamination in the northern karst aquifer of Puerto Rico using GIS. M.E. Project in Civil Engineering, University of Puerto Rico, Mayagüez

    Google Scholar 

  • ITRC (Interstate Technology & Regulatory Council). 2012. Incremental Sampling Methodology. ISM-1. Washington, D.C.: Interstate Technology & Regulatory Council, Incremental Sampling Methodology Team. Retrieved on April, 2016 from http://www.itrcweb.org/ism-1/3_1_2_Conceptual_Site_Models.html.

  • Jeannin, P.Y. 2001. Modeling flow in phreatic and epiphreatic karst conduits in the Hölloch Cave (Muotathal, Switzerland). Water Resources Research 37 (2): 191–200.

    Article  Google Scholar 

  • Jardine, P.M., G.K. Jacobs, and G.V. Wilson. 1993. Unsaturated transport processes in undisturbed heterogeneous porous media. Soil Science Society of America Journal 57: 945–953.

    Article  Google Scholar 

  • Langer, V.W., K.S. Novakowski, and A.D. Woodbury. 1999. Sorption of trichloroethene onto stylolites. Journal of Contaminant Hydrology 40 (1): 1–23.

    Article  Google Scholar 

  • Loop, C.M., and W.B. White. 2001. A conceptual model for DNAPL transport in karst groundwater basins. Ground Water 39 (1): 119–127.

    Article  Google Scholar 

  • Lugo A.E., L. Castro, A. Vale, T. López, E. Prieto, A. Martino, A. Rolón, A. Tossas, D. McFarlane, T. Miller, A. Rodríguez, J. Lundberg, J. Thomlinson, J. Colón, J. Schellekens, O. Ramos, and E. Helmer. 2001. Puerto Rican karst—A vital resource. U.S. Department of Agriculture Forest Service General Technical Report WO-65.

    Google Scholar 

  • Luhmann, A.J., M.D. Covington, S.C. Alexander, S.Y. Chai, B.F. Schwartz, J.T. Groten, and E.C. Alexander. 2012. Comparing conservative and nonconservative tracers in karst and using them to estimate flow path geometry. Journal of Hydrology 448–449: 201–211.

    Article  Google Scholar 

  • Martin, J.B., and R.W. Dean. 2001. Exchange of water between conduits and matrix in the Floridan aquifer. Chemical Geology 179 (1–4): 145–165.

    Article  Google Scholar 

  • Meeker, J.D. 2012. Exposure to environmental endocrine disruptors and child development. Archives of Pediatrics & Adolescent Medicine E1–E7. Published online http://archpedi.jamanetwork.com/.

  • Meeker, J.D., H. Hu, D.E. Cantonewine, H. Lamadrid-Figueroa, A.M. Calafat, A.S. Ettinger, M. Hernandez-Avila, R. Loch-Caruso, and M.M. Téllez-Rojo. 2009. Urinary phthalate metabolites in relation to preterm birth in Mexico City. Environmental Health Perspectives 117 (10): 1587–1592.

    Article  Google Scholar 

  • Memon, B.A., and E. Prohic. 1989. Movement of contaminants in karstified carbonate rocks. Environmental Geology and Water Science 13: 3–13.

    Article  Google Scholar 

  • Metcalfe, C.D., P.A. Beddows, G.G. Gold-Bouchot, T.L. Metcalfe, H. Li, and H. Van-Lavieren. 2010. Contaminants in the coastal karst aquifer system along the Caribbean coast of the Yucatan Peninsula, Mexico. Environmental Pollution 159 (4): 991–997. doi:10.1016/j.envpol.2010.11.031.

    Article  Google Scholar 

  • National Center for Health Statistics (NCHS). 2012. Births: Preliminary Data For 2011. National Vital Statistics Reports 61 (5). Retreived on April, 2013 from http://www.cdc.gov/nchs/data/nvsr/nvsr61/nvsr61_05_tables.pdf.

  • National Research Council (NRC). 2005. Contaminants in the Subsurface: Source Zone Assessment and Remediation, 327. Washington, DC: The National Academies Press.

    Google Scholar 

  • Orban, P., S.Brouy`ere, J. Batlle-Aguilar, J. Couturier, P. Goderniaux, M. Leroy, P. Maloszewski, and A. Dassargues. 2010. Regional transport modelling for nitrate trend assessment and forecasting in a chalk aquifer. Journal of Contaminant Hydrology 118 (1–2): 79–83.

    Google Scholar 

  • Padilla, I.Y., C. Irizarry, and K. Steele. 2011. Historical contamination of groundwater resources in the north coast karst aquifer of Puerto Rico. Dimension 25 (3): 7–12.

    Google Scholar 

  • Padilla, I.Y., V.L. Rivera, and C. Irizarry. 2015. Spatiotemporal response of CVOC contamination and remedial actions in eogenetic karst aquifers. Proceedings of the 14th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst, 5–9, Rochester, Minnesota. http://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=1075&context=sinkhole_2015.

  • Perrin, J.B. L. Parker, and J.A. Cherry. 2011. Assessing the flow regime in a contaminated fractured and karstic dolostone aquifer supplying municipal water. Journal of Hydrology 400 (3): 396–410.

    Google Scholar 

  • Peterson, D.R.,and C.A. Stapples. 2003. Degradation of phthalates in the environment. In The Handbook of Environmental Chemistry: Phthalate Esters, vol 3, Part Q, 85–124. Berlin: Springer-Verlag.

    Google Scholar 

  • Plummer, L.N., P.L. Sibrell, G.C. Casile, E. Busenberg, A.G. Hunt, and P. Schlosser. 2013. Tracing groundwater with low-level detections of halogenated VOCs in a fractured carbonate-rock aquifer, Leetown Science Center, West Virginia, USA. Applied Geochemistry 33: 260–280.

    Article  Google Scholar 

  • Quinlan, J.F., G.J. Davies, S.W. Jones, and P.W. Huntoon. 1996. The applicability of numerical models to adequately characterize groundwater flow in karstic and other triple-porosity aquifers. In Subsurface Fluid Flow (Groundwater and Vadose Zone) Modeling, ed. J.D. Ritchy, and J.O. Rumbaugh, 114–133. American Testing for Testing Materials, ASTM STP 1288.

    Google Scholar 

  • Reh, R., T. Licha, T. Geyer, K. Nödler, and M. Sauter. 2013. Occurrence and spatial distribution of organic micro-pollutants in a complex hydrogeological karst system during low flow and high flow periods, results of a two-year study. Science of Total Environment 443: 438–445.

    Article  Google Scholar 

  • Renken, R.A., W.C. Ward, I.P. Gill, F. Gomez-Gomez, J. Rodriguez-Martinez, et al. 2002. Geology and hydrogeology of the Caribbean islands aquifer system of the Commonwealth of Puerto Rico and the U.S. Virgin Islands. U.S. Geological Survey Professional Paper 1419.

    Google Scholar 

  • Renken, R.A., K.J. Cunningham, A.M. Shapiro, R.W. Harvey, M.R. Zygnerski, D.W. Metge, and M.A. Wacker. 2008. Pathogen and chemical transport in the karst limestone of the Biscayne aquifer: 1. Revised conceptualization of groundwater flow. Water Resources Research 44: W08429.

    Article  Google Scholar 

  • Scanlon, B.R.R.E., M.E.Barrett Mace, and B. Smith. 2003. Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA. Journal of Hydrology 276: 137–158.

    Article  Google Scholar 

  • Scanlon, B.R., and J. Thrailkill. 1987. Chemical similarities among physically distinct spring types in a karst terrane. Journal of Hydrology 89: 259–279.

    Article  Google Scholar 

  • Schilling, K.E., and M. Helmers. 2008. Tile drainage as karst: Conduit flow and diffuse flow in a tile-drained watershed. Journal of Hydrology 349: 291–301.

    Article  Google Scholar 

  • Schwarz, K., T. Gocht, and P. Grathwohl. 2011. Transport of polycyclic aromatic hydrocarbons in highly vulnerable karst systems. Environmental Pollution 159 (1): 133–139. doi:10.1016/j.envpol.2010.09.026.

    Article  Google Scholar 

  • Screaton, E., J.B. Martin, B. Ginn, and L. Smith. 2004. Conduit properties and karstification in the unconfined Floridian aquifer. Ground Water 42 (3): 338–346.

    Article  Google Scholar 

  • Sepúlveda, N. 1999. Ground-water flow, solute transport and simulation of remedial alternatives for the water-table aquifer in Vega Alta, Puerto Rico. U.S. Geological Survey Water Resources Investigations Report 97-4170.

    Google Scholar 

  • Shapiro, A.M., R.A. Renken, R.W. Harvey, M.R. Zygnerski, and D.W. Metge. 2008. Pathogen and chemical transport in the karst limestone of the Biscayne aquifer: 2. Chemical retention from diffusion and slow advection. Water Resources Research 44: W08429.

    Article  Google Scholar 

  • Shoemaker, W.B., E.L. Kuniansky, S. Birk, S. Bauer, and E.D. Swain. 2008. Documentation of a Conduit Flow Process (CFP) for MODFLOW-2005. U.S. Department of the Interior, US Geological Survey. Techniques and Methods, Book 6, Chapter A24 50 p.

    Google Scholar 

  • Shuster, E.T., and W.B. White. 1971. Seasonal fluctuations in the chemistry of limestone springs: A possible means for characterizing carbonate aquifers. Journal of Hydrology 14: 93–128.

    Article  Google Scholar 

  • Sonnenfeld, N., I. Hertz-Picciotto, and W.E. Kaye. 2001. Tetrachloroethylene in drinking water and birth outcomes at the U.S. Marine Corps Base at Camp Lejeune, North Carolina. American Journal of Epidemiology 154 (10): 902–908.

    Article  Google Scholar 

  • Sorensen, J.P.R., D.J. Lapworth, D.C.W. Nkhuwa, M.E. Stuart, D.C. Gooddy, R.A. Bell, M. Chirwa, J. Kabika, M. Liemisa, M. Chibesa, and S. Pedley. 2015. Emerging contaminants in urban groundwater sources in Africa. Water Research 72: 51–63.

    Article  Google Scholar 

  • Tobin B, and D. Weary. 2004. Digital engineering aspects of karst map: a GIS version of Davies WE, Simpson JH, Ohlmacher GC, Kirk WS, and Newton EG, 1984, engineering aspects of karst. U.S. Geological Survey Open-File Report 2004-1352. Retrieved September, 2015 from http://pubs.usgs.gov/of/2004/1352/data/USA_karst.pdf.

  • Torres-Torres, N.I., I.Y. Padilla, and V.L. Rivera. 2016. Potential exposure of emerging contaminants in karst groundwater through tap water sources. Karst Waters Institute Special Publication 19: 54.

    Google Scholar 

  • USEPA, U.S. Environmental Protection Agency. 2013. TOXMAP: Environmental Health e-Maps. Retrieved September, 2015 from http://toxmap.nlm.nih.gov/toxmap/superfund/identifyAll.do.

  • USEPA, U.S. Environmental Protection Agency. 2016. Contaminants of Emerging Concern including Pharmaceuticals and Personal Care Products. Retrieved on August, 2016 from https://www.epa.gov/wqc/contaminants-emerging-concern-including-pharmaceuticals-and-personal-care-products.

  • USGS, U.S. Geological Survey. 2016. Contaminants of Emerging Concern in the Environment. Retrieved on August, 2016 from http://toxics.usgs.gov/investigations/cec/index.php.

  • Vacher, H.L., and J.E. Mylroie. 2002. Eogenetic karst from the perspective of an equivalent porous medium. Carbonates and Evaporites 17 (2): 182–196.

    Article  Google Scholar 

  • VanderKwaak, J.E., and E.A. Sudicky. 1996. Dissolution of non-aqueous-phase liquids and aqueous-phase contaminant transport in discretely-fractured porous media. Journal of Contaminant Hydrology 23 (1–2): 45–68.

    Article  Google Scholar 

  • Veni, G., H. Duchene, N.C. Crawford, C.G. Groves, G.N. Huppert, E.H. Kastning, R. Olson, and B.J. Wheeler. 2001. Living with Karst: A Fragile Foundation. American Geological Institute Environmental Awareness Series 4.

    Google Scholar 

  • Vesper, D.J., C.M. Loop, and W.B. White. 2001. Contaminant transport in karst aquifers. Theoretical and Applied Karstology 13–14: 101–111.

    Google Scholar 

  • Weary, D.J., and D.H. Doctor. 2014. Karst in the United States: A digital map compilation and database: U.S. Geological Survey Open-File Report 2014-1156, 23 p.. Retrieved on August, 2016 from http://dx.doi.org/10.3133/ofr20141156.

  • White, W.B. 2002. Karst hydrology: Recent developments and open questions. Engineering Geology 65: 85–105.

    Article  Google Scholar 

  • Wolfe, W.J., and C.J. Haugh. 2001. Preliminary conceptual models of chlorinated-solvent accumulation in karst aquifers. U.S. Geological Survey Karst Interest Group Proceedings, Water-Resources Investigations Report 01-4011, 157-162

    Google Scholar 

  • Yu, X., R. Ghasemizadeh, I.Y. Padilla, C. Irizarry, D. Kaeli, and A. Alshawabkeh. 2015. Spatiotemporal changes of CVOC concentrations in karst aquifers: analysis of three decades of data from Puerto Rico. Science of the Total Environment 511: 1–10. doi:10.1016/j.scitotenv.2014.12.031.

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by Grant Award Number P42ES017198 from the National Institute of Environmental Health Sciences. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Environmental Health Sciences or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Y. Padilla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Padilla, I.Y., Vesper, D.J. (2018). Fate, Transport, and Exposure of Emerging and Legacy Contaminants in Karst Systems: State of Knowledge and Uncertainty. In: White, W., Herman, J., Herman, E., Rutigliano, M. (eds) Karst Groundwater Contamination and Public Health. Advances in Karst Science. Springer, Cham. https://doi.org/10.1007/978-3-319-51070-5_5

Download citation

Publish with us

Policies and ethics