Skip to main content

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

Abstract

Traffic offloading through small cells is an efficient approach to address the rapidly growing traffic demand in cellular systems. To facilitate traffic offloading, the recent 3GPP Release 12 has proposed a new paradigm of small-cell dual connectivity (DC) that allows a mobile user (MU) to simultaneously communicate with a macro base station (BS) and a small-cell access point (AP) through two different radio interfaces [1, 2]. With DC, an MU can flexibly schedule its traffic to the BS and offload traffic to small-cell AP simultaneously, hence achieving the benefits, such as reducing mobile data cost and improving radio resource utilization. However, in order to achieve these benefits of traffic offloading, we need to properly design the radio resource allocations due to the MUs’ limited radio resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We say that two points \(\varvec{x}\) and \(\varvec{x}'\in \mathscr {R}_{+}^{n}\) satisfy \(\varvec{x}'\le \varvec{x}\), if \(x_k'\le x_k\) holds for each element-index k of the two vectors.

  2. 2.

    Given two different \(\varvec{x}\) and \(\varvec{x}'\) with \(x_{k}\ge x_{k}',\forall k\) and \(x_{j}>x_{j}'\) for at at least one index j, there always exists \(f(\varvec{x})<f(\varvec{x}')\).

  3. 3.

    LINGO is a widely used commercial optimization software to solve complicated optimization problems [3]. LINGO provides an integrated packages that can solve linear, convex, non-convex, second-order cone, and integer optimization models and etc. Since subproblem (TPA) is a non-convex optimization problem, we use the LINGO’s global-solver to directly compute the optimal solution as a benchmark. The downside of using the global-solver is that it consumes a long computational time.

References

  1. N. S. Networks, “LTE Release 12 and Beyond,” http://networks.nokia.com/system/files/document/nokia_lte_a_evolution_white_paper.pdf.

  2. N. Ali, A. Taha, and H. Hassanein, “Quality of Service in 3GPP R12 LTE-Advanced,” IEEE Communications Magazine, vol. 51, no. 8, pp. 103–109, 2013.

    Article  Google Scholar 

  3. L. Schrage, Optimization Modeling with LINGO.   Lindo System, 1999.

    Google Scholar 

  4. Y. Wu, Y. He, L. Qian, J. Huang, and X. Shen, “Joint scheduling and power allocations for traffic offloading via dual-connectivity,” http://arxiv.org/abs/1509.09241, Sep. 2015.

  5. S. Jha, K. Sivanesan, R. Vannithamby, and A. Koc, “Dual connectivity in LTE small cell networks,” in Proc. of IEEE GLOBECOM, Austin, TX, Dec. 2014.

    Google Scholar 

  6. A. Mukherjee, “Macro-small cell grouping in dual connectivity LTE-B networks with non-ideal backhaul,” in Proc. of IEEE ICC, Sydney, Australia, Jun. 2014.

    Google Scholar 

  7. J. Liu, J. Liu, and H. Sun, “An enhanced power control scheme for dual connectivity,” in Proc. of IEEE VTC-Fall, Vancouver, Canada, Sep. 2014.

    Google Scholar 

  8. A. Mukherjee, “Optimal flow bifurcation in networks with dual base station connectivity and non-ideal backhaul,” in Proc. of Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, Nov. 2014.

    Google Scholar 

  9. H. Wang, C. Rosa, and K. Pedersen, “Dual connectivity for LTE-Advanced heterogeneous networks,” Wireless Networks, vol. 22, no. 4, pp. 1315–1328, 2016.

    Article  Google Scholar 

  10. F. Zhang, W. Zhang, and Q. Ling, “Non-cooperative game for capacity offload,” IEEE Transactions on Wireless Communications, vol. 11, no. 4, pp. 1565–1575, 2012.

    Article  MathSciNet  Google Scholar 

  11. Z. Wang and V. Wong, “A novel D2D data offloading scheme for LTE networks,” in Proc. of IEEE ICC, London, UK, May 2015.

    Google Scholar 

  12. Q. Ye, B. Rong, Y. Chen, M. Al-Shalash, C. Caramanis, and J. Andrews, “User association for load balancing in heterogeneous cellular networks,” IEEE Transactions on Wireless Communications, vol. 12, no. 6, pp. 2706–2716, 2013.

    Article  Google Scholar 

  13. C. Ho, D. Yuan, and S. Sun, “Data offloading in load coupled networks: A utility maximization framework,” IEEE Transactions on Wireless Communications, vol. 13, no. 4, pp. 1912–1931, 2014.

    Article  Google Scholar 

  14. X. Chen, J. Wu, Y. Cai, H. Zhang, and T. Chan, “Energy-efficiency oriented traffic offloading in wireless networks: A brief survey and a learning approach for heterogeneous cellular networks,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 4, pp. 627–640, 2015.

    Article  Google Scholar 

  15. G. Iosifidis, L. Gao, J. Huang, and L. Tassiulas, “Double-auction mechanism for mobile data-offloading markets,” IEEE/ACM Transactions on Networking, vol. 23, no. 5, pp. 1634–1647, 2015.

    Article  Google Scholar 

  16. Y. Yang, T. Quek, and L. Duan, “Backhaul-constrained small cell networks: Refunding and QoS provisioning,” IEEE Transactions on Wireless Communications, vol. 13, no. 9, pp. 5148–5161, 2014.

    Article  Google Scholar 

  17. X. Kang, Y. Chia, S. Sun, and H. Chong, “Mobile data offloading through a thrid-party WiFi access point: An operator’s perspective,” IEEE Transactions on Wireless Communications, vol. 13, no. 10, pp. 5340–5351, 2014.

    Article  Google Scholar 

  18. Y. Wu, K. Guo, L. P. Qian, J. Wang, and W. Lu, “Joint access-selection and power allocation for mobile data offloading in cellular networks,” in Proc. of IWCMC, Cyprus, Sep. 2016.

    Google Scholar 

  19. N. Networks, “Future work: Optimizing spectrum utilisation towards 2020,” http://networks.nokia.com/file/30301/optimising-spectrum-utilisation-towards-2020.

  20. S. Guruacharya, D. Niyato, D. I. Kim, and E. Hossain, “Hierarchical competition for downlink power allocation in OFDMA femtocell networks,” IEEE Transacations on Wireless Communications, vol. 12, no. 4, pp. 1543–1553, 2013.

    Article  Google Scholar 

  21. M. Cheung, R. Southwell, and J. Huang, “Congestion-aware network selection and data offloading,” in Proc. of IEEE CISS, Princeton, NJ, March 2014.

    Google Scholar 

  22. L. Gao, G. Iosifidis, J. Huang, and L. Tassiulas, “Economics of mobile data offloading,” in Proc. of IEEE INFOCOM Workshops, Turin, April 2013.

    Google Scholar 

  23. J. Huang, R. Berry, and M. L. Honig, “Distributed interference compensation for wireless networks,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 5, pp. 1074–1084, 2006.

    Article  Google Scholar 

  24. M. Chiang, C. Tan, D. Palomar, D. Neill, and D. Julian, “Power control by geometric programming,” IEEE Transactions on Wireless Communications, vol. 6, no. 7, pp. 2640–2651, 2007.

    Article  Google Scholar 

  25. Y. Zhang, L. Qian, and J. Huang, Monotonic Optimization in Communication and Networking Systems.   Now Publisher, 2013.

    Google Scholar 

  26. H. Tuy, “Monotonic optimization: Problems and solution approaches,” SIAM Journal of Optimization, vol. 11, no. 2, pp. 464–494, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  27. L. Qian, Y. J. Zhang, and J. Huang, “MAPEL: Achieving global optimality for a non-convex wireless power control problem,” IEEE Transactions on Wireless Communications, vol. 8, no. 3, pp. 1553–1563, 2009.

    Article  Google Scholar 

  28. R. Zhang, “Optimal dynamic resource allocation for multi-antenna broadcasting with heterogeneous delay-constrained traffic,” IEEE Journal of Selected Topics in Signal Processing, vol. 2, no. 2, pp. 243–255, 2008.

    Article  Google Scholar 

  29. O. Bejarano and E. Knightly, “IEEE 802.11ac: From channelization to multi-user MIMO,” IEEE Communications Magazine, vol. 51, no. 10, pp. 84–90, 2013.

    Article  Google Scholar 

  30. N. Instruments, “Introduction to UMTS device testing transmitter and receiver measurements for WCDMA devices,” http://download.ni.com/evaluation/rf/Introduction_to_UMTS_Device_Testing.pdf.

  31. S. Ha, C. Wong, S. Sen, and M. Chiang, “Pricing by timing: Innovating broadband data plans,” in Proc. of SPIE OPTO Broadband Access Communication Technologies VI Conference, California, USA, Jan. 2012.

    Google Scholar 

  32. J. Huang, V. Subramanian, R. Agrawal, and R. Berry, “Joint scheduling and resource allocation in uplink OFDM systems for broadband wireless access networks,” IEEE Journal on Selected Areas in Communications, vol. 27, no. 2, pp. 226–234, Feb. 2009.

    Google Scholar 

  33. G. Yu, Y. Jiang, L. Xu, and G. Li, “Multi-objective energy-efficient resource allocation for multi-RAT heterogenous networks,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 10, pp. 2118–2127, Oct. 2015.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Wu, Y., Qian, L.P., Huang, J., Shen, X. (2017). Resource Allocation for Small-Cell-Based Traffic Offloading. In: Radio Resource Management for Mobile Traffic Offloading in Heterogeneous Cellular Networks. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-51037-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51037-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51036-1

  • Online ISBN: 978-3-319-51037-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics