Advertisement

Resource Allocation for Small-Cell-Based Traffic Offloading

  • Yuan Wu
  • Li Ping Qian
  • Jianwei Huang
  • Xuemin (Sherman) Shen
Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

Traffic offloading through small cells is an efficient approach to address the rapidly growing traffic demand in cellular systems. To facilitate traffic offloading, the recent 3GPP Release 12 has proposed a new paradigm of small-cell dual connectivity (DC) that allows a mobile user (MU) to simultaneously communicate with a macro base station (BS) and a small-cell access point (AP) through two different radio interfaces [1, 2]. With DC, an MU can flexibly schedule its traffic to the BS and offload traffic to small-cell AP simultaneously, hence achieving the benefits, such as reducing mobile data cost and improving radio resource utilization. However, in order to achieve these benefits of traffic offloading, we need to properly design the radio resource allocations due to the MUs’ limited radio resources.

Keywords

Access Point Power Allocation Mobile User Traffic Demand Macrocell Base Station 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
  2. 2.
    N. Ali, A. Taha, and H. Hassanein, “Quality of Service in 3GPP R12 LTE-Advanced,” IEEE Communications Magazine, vol. 51, no. 8, pp. 103–109, 2013.CrossRefGoogle Scholar
  3. 3.
    L. Schrage, Optimization Modeling with LINGO.   Lindo System, 1999.Google Scholar
  4. 4.
    Y. Wu, Y. He, L. Qian, J. Huang, and X. Shen, “Joint scheduling and power allocations for traffic offloading via dual-connectivity,” http://arxiv.org/abs/1509.09241, Sep. 2015.
  5. 5.
    S. Jha, K. Sivanesan, R. Vannithamby, and A. Koc, “Dual connectivity in LTE small cell networks,” in Proc. of IEEE GLOBECOM, Austin, TX, Dec. 2014.Google Scholar
  6. 6.
    A. Mukherjee, “Macro-small cell grouping in dual connectivity LTE-B networks with non-ideal backhaul,” in Proc. of IEEE ICC, Sydney, Australia, Jun. 2014.Google Scholar
  7. 7.
    J. Liu, J. Liu, and H. Sun, “An enhanced power control scheme for dual connectivity,” in Proc. of IEEE VTC-Fall, Vancouver, Canada, Sep. 2014.Google Scholar
  8. 8.
    A. Mukherjee, “Optimal flow bifurcation in networks with dual base station connectivity and non-ideal backhaul,” in Proc. of Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, Nov. 2014.Google Scholar
  9. 9.
    H. Wang, C. Rosa, and K. Pedersen, “Dual connectivity for LTE-Advanced heterogeneous networks,” Wireless Networks, vol. 22, no. 4, pp. 1315–1328, 2016.CrossRefGoogle Scholar
  10. 10.
    F. Zhang, W. Zhang, and Q. Ling, “Non-cooperative game for capacity offload,” IEEE Transactions on Wireless Communications, vol. 11, no. 4, pp. 1565–1575, 2012.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Z. Wang and V. Wong, “A novel D2D data offloading scheme for LTE networks,” in Proc. of IEEE ICC, London, UK, May 2015.Google Scholar
  12. 12.
    Q. Ye, B. Rong, Y. Chen, M. Al-Shalash, C. Caramanis, and J. Andrews, “User association for load balancing in heterogeneous cellular networks,” IEEE Transactions on Wireless Communications, vol. 12, no. 6, pp. 2706–2716, 2013.CrossRefGoogle Scholar
  13. 13.
    C. Ho, D. Yuan, and S. Sun, “Data offloading in load coupled networks: A utility maximization framework,” IEEE Transactions on Wireless Communications, vol. 13, no. 4, pp. 1912–1931, 2014.CrossRefGoogle Scholar
  14. 14.
    X. Chen, J. Wu, Y. Cai, H. Zhang, and T. Chan, “Energy-efficiency oriented traffic offloading in wireless networks: A brief survey and a learning approach for heterogeneous cellular networks,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 4, pp. 627–640, 2015.CrossRefGoogle Scholar
  15. 15.
    G. Iosifidis, L. Gao, J. Huang, and L. Tassiulas, “Double-auction mechanism for mobile data-offloading markets,” IEEE/ACM Transactions on Networking, vol. 23, no. 5, pp. 1634–1647, 2015.CrossRefGoogle Scholar
  16. 16.
    Y. Yang, T. Quek, and L. Duan, “Backhaul-constrained small cell networks: Refunding and QoS provisioning,” IEEE Transactions on Wireless Communications, vol. 13, no. 9, pp. 5148–5161, 2014.CrossRefGoogle Scholar
  17. 17.
    X. Kang, Y. Chia, S. Sun, and H. Chong, “Mobile data offloading through a thrid-party WiFi access point: An operator’s perspective,” IEEE Transactions on Wireless Communications, vol. 13, no. 10, pp. 5340–5351, 2014.CrossRefGoogle Scholar
  18. 18.
    Y. Wu, K. Guo, L. P. Qian, J. Wang, and W. Lu, “Joint access-selection and power allocation for mobile data offloading in cellular networks,” in Proc. of IWCMC, Cyprus, Sep. 2016.Google Scholar
  19. 19.
    N. Networks, “Future work: Optimizing spectrum utilisation towards 2020,” http://networks.nokia.com/file/30301/optimising-spectrum-utilisation-towards-2020.
  20. 20.
    S. Guruacharya, D. Niyato, D. I. Kim, and E. Hossain, “Hierarchical competition for downlink power allocation in OFDMA femtocell networks,” IEEE Transacations on Wireless Communications, vol. 12, no. 4, pp. 1543–1553, 2013.CrossRefGoogle Scholar
  21. 21.
    M. Cheung, R. Southwell, and J. Huang, “Congestion-aware network selection and data offloading,” in Proc. of IEEE CISS, Princeton, NJ, March 2014.Google Scholar
  22. 22.
    L. Gao, G. Iosifidis, J. Huang, and L. Tassiulas, “Economics of mobile data offloading,” in Proc. of IEEE INFOCOM Workshops, Turin, April 2013.Google Scholar
  23. 23.
    J. Huang, R. Berry, and M. L. Honig, “Distributed interference compensation for wireless networks,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 5, pp. 1074–1084, 2006.CrossRefGoogle Scholar
  24. 24.
    M. Chiang, C. Tan, D. Palomar, D. Neill, and D. Julian, “Power control by geometric programming,” IEEE Transactions on Wireless Communications, vol. 6, no. 7, pp. 2640–2651, 2007.CrossRefGoogle Scholar
  25. 25.
    Y. Zhang, L. Qian, and J. Huang, Monotonic Optimization in Communication and Networking Systems.   Now Publisher, 2013.Google Scholar
  26. 26.
    H. Tuy, “Monotonic optimization: Problems and solution approaches,” SIAM Journal of Optimization, vol. 11, no. 2, pp. 464–494, 2000.MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    L. Qian, Y. J. Zhang, and J. Huang, “MAPEL: Achieving global optimality for a non-convex wireless power control problem,” IEEE Transactions on Wireless Communications, vol. 8, no. 3, pp. 1553–1563, 2009.CrossRefGoogle Scholar
  28. 28.
    R. Zhang, “Optimal dynamic resource allocation for multi-antenna broadcasting with heterogeneous delay-constrained traffic,” IEEE Journal of Selected Topics in Signal Processing, vol. 2, no. 2, pp. 243–255, 2008.CrossRefGoogle Scholar
  29. 29.
    O. Bejarano and E. Knightly, “IEEE 802.11ac: From channelization to multi-user MIMO,” IEEE Communications Magazine, vol. 51, no. 10, pp. 84–90, 2013.CrossRefGoogle Scholar
  30. 30.
    N. Instruments, “Introduction to UMTS device testing transmitter and receiver measurements for WCDMA devices,” http://download.ni.com/evaluation/rf/Introduction_to_UMTS_Device_Testing.pdf.
  31. 31.
    S. Ha, C. Wong, S. Sen, and M. Chiang, “Pricing by timing: Innovating broadband data plans,” in Proc. of SPIE OPTO Broadband Access Communication Technologies VI Conference, California, USA, Jan. 2012.Google Scholar
  32. 32.
    J. Huang, V. Subramanian, R. Agrawal, and R. Berry, “Joint scheduling and resource allocation in uplink OFDM systems for broadband wireless access networks,” IEEE Journal on Selected Areas in Communications, vol. 27, no. 2, pp. 226–234, Feb. 2009.Google Scholar
  33. 33.
    G. Yu, Y. Jiang, L. Xu, and G. Li, “Multi-objective energy-efficient resource allocation for multi-RAT heterogenous networks,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 10, pp. 2118–2127, Oct. 2015.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Yuan Wu
    • 1
  • Li Ping Qian
    • 1
  • Jianwei Huang
    • 2
  • Xuemin (Sherman) Shen
    • 3
  1. 1.College of Information EngineeringZhejiang University of TechnologyHangzhouChina
  2. 2.Department of Information EngineeringThe Chinese University of Hong KongShatinHong Kong
  3. 3.Department of Electrical and Computer EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations