Dynamics Controls for Orthotropic Materials



In this chapter, we further introduce deformation simulation for orthotropic materials. An orthotropic deformation controlling frame-field is conceptualized and a frame construction tool is developed for users to define the desired material properties. A quaternion Laplacian smoothing algorithm is designed for propagating the user-defined sparsely distributed frames into the entire object. The orthotropic frame-field is coupled with the CLFEM model to complete an orthotropic deformable model.


Isotropic Material Strain Energy Density Orthotropic Material NURBS Curve Deformable Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Li, Y., et al. (2014). Stable orthotropic materials. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association.Google Scholar
  2. 2.
    Choi, H. F., & Blemker, S. S. (2013). Skeletal muscle fascicle arrangements can be reconstructed using a laplacian vector field simulation. PLoS ONE, 8(10), e77576.CrossRefGoogle Scholar
  3. 3.
    Bloomenthal, M. (1988). Approximation of sweep surfaces by tensor product B-splines. Tech Reports UUCS-88-008, University of Utah.Google Scholar
  4. 4.
    Wang, W., et al. (2008). Computation of rotation minimizing frames. ACM Transactions on Graphics (TOG), 27(1), 2.Google Scholar
  5. 5.
    Magnenat-Thalmann, N., Laperrire, R., & Thalmann, D. (1988). Joint-dependent local deformations for hand animation and object grasping. In Proceedings on Graphics Interface’88. Citeseer.Google Scholar
  6. 6.
    Shoemake, K. (1985). Animating rotation with quaternion curves. In ACM SIGGRAPH Computer Graphics. ACM.Google Scholar
  7. 7.
    Kavan, L., & Žára, J. (2005). Spherical blend skinning: A real-time deformation of articulated models. In Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games. ACM.Google Scholar
  8. 8.
    Kavan, L., et al. (2006). Dual quaternions for rigid transformation blending. Trinity College Dublin, Tech. Rep. TCD-CS-2006-46.Google Scholar
  9. 9.
    Sorkine, O., et al. (2004). Laplacian surface editing. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing. ACM.Google Scholar
  10. 10.
    Takayama, K., et al. (2007). A sketch-based interface for modeling myocardial fiber orientation. In Smart graphics. Berlin: Springer.Google Scholar
  11. 11.
    Lipman, Y., Rustamov, R. M., & Funkhouser, T. A. (2010). Biharmonic distance. ACM Transactions on Graphics (TOG), 29(3), 27.CrossRefGoogle Scholar
  12. 12.
    Davis, T. A. (2004). UMFPACK-an unsymmetric-pattern multifrontal method with a column pre-ordering strategy. ACM Transactions on Mathematical Software (TOMS), 30(204), 196–199.CrossRefGoogle Scholar
  13. 13.
    Bower, A. F. (2009). Applied mechanics of solids. Boca Raton: CRC press.Google Scholar
  14. 14.
    Irving, G., Teran, J., & Fedkiw, R. (2004). Invertible finite elements for robust simulation of large deformation. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (pp. 131–140). Grenoble, France: Eurographics Association.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Nanyang Technological UniversitySingaporeSingapore
  2. 2.School of Computer EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations