Skip to main content

Fiber Controls in FEM Model for Transversely Isotropic Materials

  • Chapter
  • First Online:
Book cover Graphical Simulation of Deformable Models

Abstract

In this chapter, we investigate transversely isotropic materials for the simulation of deformable objects with fibrous structures. In previous work, direction-dependent behaviors of transversely isotropic materials can only be achieved with an additional energy function which incorporates the material preferred direction. Such an additional energy term increases the computational complexity. We introduce a fiber-field incorporated corotational finite element model (CLFEM) that works directly with a constitutive model of transversely isotropic material. A smooth fiber-field is used to establish the local frames for each element. The orientation information of each element is incorporated into the CLFEM model by adding local transformations onto each element of the stiffness matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ogden, R. (2003) Nonlinear elasticity, anisotropy, material stability and residual stresses in soft tissue (pp. 65–108). Courses And Lectures-International Centre For Mechanical Sciences.

    Google Scholar 

  2. Picinbono, G., Delingette, H., & Ayache, N. (2001) Nonlinear and anisotropic elastic soft tissue models for medical simulation. IEEE.

    Google Scholar 

  3. Picinbono, G., Delingette, H., & Ayache, N. (2003). Non-linear anisotropic elasticity for real-time surgery simulation. Graphical Models, 65(5), 305–321.

    Article  MATH  Google Scholar 

  4. Irving, G., Teran, J., & Fedkiw, R. (2004) Invertible finite elements for robust simulation of large deformation. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (pp. 131–140). Grenoble, France: Eurographics Association.

    Google Scholar 

  5. Teran, J., et al. (2003) Finite volume methods for the simulation of skeletal muscle. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (pp. 68–74). San Diego, California: Eurographics Association.

    Google Scholar 

  6. Liu, N., et al. (2012) Physical material editing with structure embedding for animated solid. In Proceedings of Graphics Interface 2012 (pp. 193–200). Toronto, Ontario, Canada: Canadian Information Processing Society.

    Google Scholar 

  7. Ting, T. C. T. (1996). Anisotropic elasticity: Theory and applications (Vol. 45). USA: Oxford University Press.

    MATH  Google Scholar 

  8. Müller, M., & Gross, M. (2004) Interactive virtual materials, In Proceedings of Graphics Interface (pp. 239–246). London, Ontario, Canada: Canadian Human-Computer Communications Society.

    Google Scholar 

  9. Baraff, D., & Witkin, A. (1998) Large steps in cloth simulation. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques (pp. 43–54). ACM.

    Google Scholar 

  10. Takayama, K., et al. (2008). A sketch-based interface for modeling myocardial fiber orientation that considers the layered structure of the ventricles. The Journal of Physiological Sciences: JPS, 58(7), 487–492.

    Article  MathSciNet  Google Scholar 

  11. Ijiri, T., et al. (2012). A kinematic approach for efficient and robust simulation of the cardiac beating motion. PLoS ONE, 7(5), e36706.

    Article  Google Scholar 

  12. Rohmer, D., Sitek, A., & Gullberg, G. T. (2007). Reconstruction and visualization of fiber and laminar structure in the normal human heart from ex vivo diffusion tensor magnetic resonance imaging (DTMRI) data. Investigative Radiology, 42(11), 777.

    Article  Google Scholar 

  13. Sosnovik, D. E., et al. (2009). Diffusion MR tractography of the heart. Journal of Cardiovascular Magnetic Resonance, 11(1), 1–15.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Cai .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cai, J., Lin, F., Seah, H.S. (2016). Fiber Controls in FEM Model for Transversely Isotropic Materials. In: Graphical Simulation of Deformable Models. Springer, Cham. https://doi.org/10.1007/978-3-319-51031-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51031-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51030-9

  • Online ISBN: 978-3-319-51031-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics