Advertisement

Dynamics Simulation in a Nutshell

Chapter
  • 360 Downloads

Abstract

In this chapter, we provide fundamental theories on continuum-based deformable models, including elasticity theory, finite element discretization, dynamics equations of motion and numerical integration schemes.

Keywords

Time-stepping Rules Green Strain Tensor Nonlinear Root Finding Problem Material Point Position Robust Optimization Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bonet, J., & Wood, R. D. (2008). Nonlinear continuum mechanics for finite element analysis (2nd ed.). Cambridge: Cambridge university press.Google Scholar
  2. 2.
    Irving, G., Teran, J., & Fedkiw, R. (2004). Invertible finite elements for robust simulation of large deformation. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on computer animation (pp. 131–140). Grenoble, France: Eurographics Association.Google Scholar
  3. 3.
    Huang, J., et al. (2011). Interactive shape interpolation through controllable dynamic deformation. IEEE Transactions on Visualization and Computer Graphics, 17(7), 983–992.CrossRefGoogle Scholar
  4. 4.
    Barbič, J., Sin, F., & Grinspun, E. (2012). Interactive editing of deformable simulations. ACM Transactions on Graphics (SIGGRAPH 2012), 31(4).Google Scholar
  5. 5.
    Martin, S., et al. (2011). Example-based elastic materials. ACM Transactions on Graphics (TOG), 30(4), 72.CrossRefGoogle Scholar
  6. 6.
    Fackler, P. L. (2005). Notes on matrix calculus. North Carolina State University.Google Scholar
  7. 7.
    Müller, M., & Gross, M. (2004). Interactive virtual materials. In Proceedings of graphics interface (pp. 239–246). London, Ontario, Canada: Canadian Human-Computer Communications Society.Google Scholar
  8. 8.
    Barbič, J., & James, D. L. (2005). Real-time subspace integration for St. Venant-Kirchhoff deformable models. In ACM SIGGRAPH 2005 Papers (pp. 982–990). Los Angeles, California: ACM.Google Scholar
  9. 9.
    Irving, G., Teran, J., & Fedkiw, R. (2006). Tetrahedral and hexahedral invertible finite elements. Graphical Models, 68(2), 66–89.CrossRefzbMATHGoogle Scholar
  10. 10.
    Stomakhin, A., et al. (2012). Energetically consistent invertible elasticity. In Eurographics/ACM SIGGRAPH symposium on computer animation. The Eurographics Association.Google Scholar
  11. 11.
    Teran, J., et al. (2003). Finite volume methods for the simulation of skeletal muscle. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on computer animation (pp. 68–74). San Diego, California: Eurographics Association.Google Scholar
  12. 12.
    An, S. S., Kim, T., & James, D. L. (2008). Optimizing cubature for efficient integration of subspace deformations. In ACM Transactions on Graphics (TOG). New York: ACM.Google Scholar
  13. 13.
    Felippa, C. A. (2004) Introduction to finite element methods. Boulder: University of Colorado, http://www.colorado.edu/engineering/cas/courses.d/IFEM.d/
  14. 14.
    Morin, D. (2008). Introduction to classical mechanics: with problems and solutions. Cambridge: Cambridge University Press.Google Scholar
  15. 15.
    Shabana, A. A. (2009). Computational dynamics. Hoboken: Wiley.Google Scholar
  16. 16.
    Abell, M. L., & Braselton, J. P. (2014). Introductory differential equations: With boundary value problems. Amsterdam: Elsevier.Google Scholar
  17. 17.
    Fasshauer, G. (2007). Course notes: Numerical methods for differential equations/computational mathematics II. http://www.math.iit.edu/~fass/478_578_handouts.html
  18. 18.
    Stern, A., & Desbrun, M. (2006). Discrete geometric mechanics for variational time integrators. In ACM SIGGRAPH 2006 Courses. New York: ACM.Google Scholar
  19. 19.
    Müller, M., et al. (2008). Real time physics: Class notes. In ACM SIGGRAPH 2008 classes (pp. 1–90). Los Angeles, California: ACM.Google Scholar
  20. 20.
    Wood, W. (1990). Practical time-stepping schemes (Vol. 6). Oxford, UK: Clarendon Press.Google Scholar
  21. 21.
    Nocedal, J., & Wright, S. (2006). Numerical optimization. Berlin: Springer Science & Business Media.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Nanyang Technological UniversitySingaporeSingapore
  2. 2.School of Computer EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations