Advertisement

Introduction

Chapter
  • 360 Downloads

Abstract

In this chapter, we introduce the objectives of dynamics simulation of deformable objects. We conduct an in-depth survey on the relevant research topics, especially the simulation of deformable models with anisotropic materials, which is less exploited in existing research. We are motivated to improve the physical realism of simulation, since many real-world objects have complex mechanical rather than isotropic properties. Both physically-based and geometrically-based approaches are studied, and our contributions are made in modeling and control of anisotropic dynamics deformations.

Keywords

Internal Force Anisotropic Material Finite Element Method Model Deformable Model Graphic Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Botsch, M., et al. (2010). Polygon mesh processing. CRC press.Google Scholar
  2. 2.
    Crane, K., et al. (2013). Digital geometry processing with discrete exterior calculus. In ACM SIGGRAPH 2013 courses. ACM.Google Scholar
  3. 3.
    Panozzo, D., & Jacobson, A. (2015). Libigl tutorial notes. SGP Graduate School 2015.Google Scholar
  4. 4.
    Sorkine, O., & Alexa, M. (2007). As-rigid-as-possible surface modeling. In Symposium on geometry processing.Google Scholar
  5. 5.
    Sorkine, O., et al. (2004). Laplacian surface editing. In Proceedings of the 2004 eurographics/ACM SIGGRAPH symposium on geometry processing. ACM.Google Scholar
  6. 6.
    Zhang, S., Huang, J., & Metaxas, D. N. (2011). Robust mesh editing using Laplacian coordinates. Graphical Models, 73(1), 10–19.CrossRefGoogle Scholar
  7. 7.
    Zhou, K., et al. (2005). Large mesh deformation using the volumetric graph laplacian. In ACM transactions on graphics (TOG). ACM.Google Scholar
  8. 8.
    Liu, T., et al. (2013). Fast simulation of mass-spring systems. ACM Transactions on Graphics (TOG), 32(6), 214.Google Scholar
  9. 9.
    Bouaziz, S., et al. (2014). Projective dynamics: Fusing constraint projections for fast simulation. ACM Transactions on Graphics (TOG), 33(4), 154.CrossRefGoogle Scholar
  10. 10.
    Müller, M., et al. (2005). Meshless deformations based on shape matching. In ACM transactions on graphics (TOG). ACM.Google Scholar
  11. 11.
    Müller, M., et al. (2002). Stable real-time deformations. In Proceedings of the 2002 ACM SIGGRAPH/eurographics symposium on computer animation. ACM.Google Scholar
  12. 12.
    Müller, M., & Gross, M. (2004). Interactive virtual materials. In Proceedings of graphics interface (pp. 239–246). Canadian Human-Computer Communications Society: London, Ontario, Canada.Google Scholar
  13. 13.
    Chao, I., et al. (2010). A simple geometric model for elastic deformations. In ACM transactions on graphics (TOG). ACM.Google Scholar
  14. 14.
    Jakobsen, T. (2001). Advanced character physics. In Game developers conference.Google Scholar
  15. 15.
    Rivers, A. R., & James, D. L. (2007). FastLSM: Fast lattice shape matching for robust real-time deformation. ACM Transactions on Graphics, 26(3), 82.CrossRefGoogle Scholar
  16. 16.
    Steinemann, D., Otaduy, M. A. & Gross, M. (2008). Fast adaptive shape matching deformations. In Proceedings of the 2008 ACM SIGGRAPH/eurographics symposium on computer animation (pp. 87–94). Eurographics Association: Dublin, Ireland.Google Scholar
  17. 17.
    Koyama, Y., et al. (2012). Real-time example-based elastic deformation. In Proceedings of the 11th ACM SIGGRAPH/eurographics conference on computer animation. Eurographics Association.Google Scholar
  18. 18.
    Müller, M., & Chentanez, N. (2011). Solid simulation with oriented particles. ACM Transactions on Graphics (TOG), 30(4), 92.CrossRefGoogle Scholar
  19. 19.
    Bender, J., Müller, M., & Macklin, M. (2015). Position-based simulation methods in computer graphics. In Tutorial proceedings of eurographics.Google Scholar
  20. 20.
    Coumans, E. (2010). Bullet physics engine. Open Source Software: http://bulletphysics.org 1.
  21. 21.
    Müller, M., et al. (2007). Position based dynamics. Journal of Visual Communication and Image Representation, 18(2), 109–118.CrossRefGoogle Scholar
  22. 22.
    Micky Kelager, S. N., & Erleben, K. (2010). A triangle bending constraint model for position-based dynamics. In Proceedings of VRIPHYS’2010 (pp. 31–37).Google Scholar
  23. 23.
    Diziol, R., Bender, J., & Bayer, D. (2011). Robust real-time deformation of incompressible surface meshes. In Proceedings of the 2011 ACM SIGGRAPH/eurographics symposium on computer animation (pp. 237–246). ACM: Vancouver, British Columbia, Canada.Google Scholar
  24. 24.
    Müller, M., et al. (2008). Real time physics: class notes. In ACM SIGGRAPH 2008 classes (pp. 1–90). ACM: Los Angeles, California.Google Scholar
  25. 25.
    Bender, J., et al. (2014). A survey on position-based simulation methods in computer graphics. Computer Graphics Forum, 33(6), 228–251.CrossRefGoogle Scholar
  26. 26.
    Mollemans, W., et al. (2003). Tetrahedral mass spring model for fast soft tissue deformation. In N. Ayache & H. Delingette (Eds.), Surgery simulation and soft tissue modeling, proceedings (pp. 145–154).Google Scholar
  27. 27.
    Halic, T., et al. (2009). Soft tissue deformation and optimized data structures for mass spring methods. In Bioinformatics and bioengineering. Ninth IEEE international conference on BIBE ‘09 2009.Google Scholar
  28. 28.
    Selle, A., Lentine, M., & Fedkiw, R. (2008). A mass spring model for hair simulation. ACM Transactions on Graphics, 27(3), 1–11.CrossRefGoogle Scholar
  29. 29.
    San-Vicente, G., Aguinaga, I., & Celigueta, J. T. (2012). Cubical mass-spring model design based on a tensile deformation test and nonlinear material model. IEEE Transactions on Visualization and Computer Graphics, 18(2), 228–241.CrossRefGoogle Scholar
  30. 30.
    Tu, X. (1999). Artificial animals for computer animation: biomechanics, locomotion, perception, and behavior. Springer Science & Business Media.Google Scholar
  31. 31.
    Baraff, D., & Witkin, A. (1998). Large steps in cloth simulation. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques (pp. 43–54). ACM.Google Scholar
  32. 32.
    Teschner, M., et al. (2004). A versatile and robust model for geometrically complex deformable solids. In CGI ‘04: proceedings of the computer graphics international. IEEE Computer Society.Google Scholar
  33. 33.
    Ward, J. P. (1992). Solid mechanics: an introduction (Vol 15). Springer Science & Business Media.Google Scholar
  34. 34.
    Kelly, P., Solid mechanics lecture notes. http://homepages.engineering.auckland.ac.nz/~pkel015/SolidMechanicsBooks/index.html: Department of Engineering Science, University of Auckland.
  35. 35.
    Cook, R. D. (2007). Concepts and applications of finite element analysis. Wiley.Google Scholar
  36. 36.
    Bonet, J., & Wood, R. D. (2008). Nonlinear continuum mechanics for finite element analysis (2nd ed.). Cambridge university press.Google Scholar
  37. 37.
    Terzopoulos, D., et al. (1987). Elastically deformable models. SIGGRAPH Computer Graphics, 21(4), 205–214.CrossRefGoogle Scholar
  38. 38.
    Gibson, S. F. F., & Mirtich, B. (1997). A survey of deformable modeling in computer graphics. Technical Report TR-97-1, 1997. 9.Google Scholar
  39. 39.
    Nealen, A., et al. (2006). Physically based deformable models in computer graphics. Computer Graphics Forum, 25(4), 809–836.CrossRefGoogle Scholar
  40. 40.
    Sifakis, E., & Barbic, J. (2012). FEM simulation of 3D deformable solids: a practitioner’s guide to theory, discretization and model reduction. In ACM SIGGRAPH 2012 courses. ACM.Google Scholar
  41. 41.
    Allard, J., Courtecuisse, H., & Faure, F. (2011). Implicit FEM solver on GPU for interactive deformation simulation. In W. H. Wen-mei (Ed.), GPU computing gems Jade Edition (pp. 281–294), Elsevier.Google Scholar
  42. 42.
    Georgii, J., & Westermann, R. (2008). Corotated finite elements made fast and stable. VRIPHYS, 8, 11–19.Google Scholar
  43. 43.
    Stomakhin, A., et al. (2012). Energetically consistent invertible elasticity. In Eurographics/ACM SIGGRAPH symposium on computer animation. The Eurographics Association.Google Scholar
  44. 44.
    Irving, G., J. Teran, & Fedkiw, R. (2004). Invertible finite elements for robust simulation of large deformation. In Proceedings of the 2004 ACM SIGGRAPH/eurographics symposium on computer animation (pp. 131–140). Eurographics Association: Grenoble, France.Google Scholar
  45. 45.
    Irving, G., Teran, J., & Fedkiw, R. (2006). Tetrahedral and hexahedral invertible finite elements. Graphical Models, 68(2), 66–89.CrossRefzbMATHGoogle Scholar
  46. 46.
    Teran, J., et al. (2005). Robust quasistatic finite elements and flesh simulation. In Proceedings of the 2005 ACM SIGGRAPH/eurographics symposium on computer animation (pp. 181–190). ACM: Los Angeles, California.Google Scholar
  47. 47.
    Sin, F., et al. (2011). Invertible isotropic hyperelasticity using SVD gradients. In Posters and demos, 2011 ACM SIGGRAPH/eurographics symposium on computer animation 2011.Google Scholar
  48. 48.
    Wriggers, P., & Laursen, T. A. (2006). Computational contact mechanics (Vol 30167). Springer.Google Scholar
  49. 49.
    Jernej, B., Fun, S. S., & Daniel, S. (2012). Vega FEM library. http://www.jernejbarbic.com/vega
  50. 50.
    Nocedal, J., & Wright, S. (2006). Numerical optimization. Springer Science & Business Media.Google Scholar
  51. 51.
    Martin, S., et al. (2011). Example-based elastic materials. ACM Transactions on Graphics (TOG), 30(4), 72.CrossRefGoogle Scholar
  52. 52.
    Gast, T. F., & Schroeder, C. (2014). Optimization integrator for large time steps. In Proceedings of the ACM SIGGRAPH/eurographics symposium on computer animation (pp. 31–40). Eurographics Association: Copenhagen, Denmark.Google Scholar
  53. 53.
    Frâncu, M., & Moldoveanu, F. (2015). Cloth simulation using soft constraints. Journal of WSCG (Cumulative issue), 23(1–3), pp. 9–18. ISBN 978-80-86943-64-0.Google Scholar
  54. 54.
    Kharevych, L., et al. (2006). Geometric, variational integrators for computer animation. In Proceedings of the 2006 ACM SIGGRAPH/eurographics symposium on computer animation. Eurographics Association.Google Scholar
  55. 55.
    Deng, B., et al. (2015). Interactive design exploration for constrained meshes. Computer-Aided Design, 61, 13–23.CrossRefGoogle Scholar
  56. 56.
    Huang, J., et al. (2006). Geometrically based potential energy for simulating deformable objects. The Visual Computer, 22(9–11), 740–748.CrossRefGoogle Scholar
  57. 57.
    Alexa, M. (2003). Differential coordinates for local mesh morphing and deformation. The Visual Computer, 19(2), 105–114.zbMATHGoogle Scholar
  58. 58.
    Coros, S., et al. (2012). Deformable objects alive! ACM Transactions on Graphics (TOG), 31(4), p. 69.Google Scholar
  59. 59.
    Shabana, A. A. (1996). Theory of vibration: an introduction (Vol. 1). Springer.Google Scholar
  60. 60.
    Hunter, P., & Pullan, A. (2001). Fem/bem notes. Department of Engineering Science: The University of Auckland, New Zeland.Google Scholar
  61. 61.
    Pentland, A., & Williams, J. (1989). Good vibrations: Modal dynamics for graphics and animation. SIGGRAPH Computer Graphics, 23(3), 207–214.CrossRefGoogle Scholar
  62. 62.
    Hauser, K. K., Shen, C., & O’Brien, J. F. (2003). Interactive deformation using modal analysis with constraints. In Graphics interface.Google Scholar
  63. 63.
    Lehoucq, R. B., Sorensen, D. C., & Yang, C. (1998). ARPACK users’ guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods (Vol. 6). Siam.Google Scholar
  64. 64.
    Barbič, J. (2007). Real-time reduced large-deformation models and distributed contact for computer graphics and haptics. Carnegie Mellon University.Google Scholar
  65. 65.
    Barbič, J., & James, D. L. (2005). Real-time subspace integration for St. Venant-Kirchhoff deformable models. In ACM SIGGRAPH 2005 papers (pp. 982–990). ACM: Los Angeles, California.Google Scholar
  66. 66.
    von Tycowicz, C., et al. (2013). An efficient construction of reduced deformable objects. ACM Transactions on Graphics (TOG), 32(6), 213.Google Scholar
  67. 67.
    Choi, M. G., & Ko, H.-S. (2005). Modal warping: Real-time simulation of large rotational deformation and manipulation. IEEE Transactions on Visualization and Computer Graphics, 11(1), 91–101.CrossRefGoogle Scholar
  68. 68.
    Huang, J., et al. (2011). Interactive shape interpolation through controllable dynamic deformation. IEEE Transactions on Visualization and Computer Graphics, 17(7), 983–992.CrossRefGoogle Scholar
  69. 69.
    Barbič, J., Sin, F., & Grinspun, E. (2012). Interactive editing of deformable simulations. ACM Transaction on Graphics (SIGGRAPH 2012), 31(4).Google Scholar
  70. 70.
    Li, S., et al. (2014). Space-time editing of elastic motion through material optimization and reduction. ACM Transactions on Graphics, 33(4) p. Art. No. 108.Google Scholar
  71. 71.
    Barbič, J., & Zhao, Y. (2011). Real-time large-deformation substructuring. In ACM SIGGRAPH 2011 papers (pp. 1–8). ACM: Vancouver, British Columbia, Canada.Google Scholar
  72. 72.
    Kim, T., & James, D. L. (2011). Physics-based character skinning using multi-domain subspace deformations. In Proceedings of the 2011 ACM SIGGRAPH/eurographics symposium on computer animation (pp. 63–72). ACM: Vancouver, British Columbia, Canada.Google Scholar
  73. 73.
    Yang, Y., et al. (2013). Boundary-aware multi-domain subspace deformation. IEEE Transactions on Visualization and Computer Graphics.Google Scholar
  74. 74.
    Harmon, D., & Zorin, D. (2013). Subspace integration with local deformations. ACM Transactions on Graphics (TOG), 32(4), 107.CrossRefzbMATHGoogle Scholar
  75. 75.
    Hildebrandt, K., et al. (2011). Interactive surface modeling using modal analysis. ACM Transactions on Graphics (TOG), 30(5), 119.MathSciNetCrossRefGoogle Scholar
  76. 76.
    Hildebrandt, K., et al. (2010). Eigenmodes of surface energies for shape analysis. In Advances in geometric modeling and processing (pp. 296–314). Springer.Google Scholar
  77. 77.
    Hildebrandt, K., et al. (2012). Modal shape analysis beyond Laplacian. Computer Aided Geometric Design, 29(5), 204–218.MathSciNetCrossRefGoogle Scholar
  78. 78.
    von Tycowicz, C. (2014). Concepts and algorithms for the deformation, analysis, and compression of digital shapes. Freie Universität Berlin.Google Scholar
  79. 79.
    An, S. S., Kim, T. & James, D. L. (2008). Optimizing cubature for efficient integration of subspace deformations. In ACM transactions on graphics (TOG). ACM.Google Scholar
  80. 80.
    Gilles, B., et al. (2011). Frame-based elastic models. ACM Transactions on Graphics, 30(2), 1–12.MathSciNetCrossRefGoogle Scholar
  81. 81.
    Faure, F., et al. (2011). Sparse meshless models of complex deformable solids. ACM Transactions on Graphics, 30(4), 1–10.MathSciNetCrossRefGoogle Scholar
  82. 82.
    Gilles, B., et al. (2013). Frame-based interactive simulation of complex deformable objects. In Deformation models (pp. 145–166). Springer.Google Scholar
  83. 83.
    Tournier, M., et al. (2014). Seamless adaptivity of elastic models. In Proceedings of the 2014 graphics interface conference. Canadian Information Processing Society.Google Scholar
  84. 84.
    Tournier, M., et al. (2014). Velocity-based adaptivity of deformable models. Computers & Graphics, 45, 75–85.CrossRefGoogle Scholar
  85. 85.
    Hahn, F., et al. (2012). Rig-space physics. ACM Transactions on Graphics, 31(4), 1–8.CrossRefGoogle Scholar
  86. 86.
    Hahn, F., et al. (2013). Efficient simulation of secondary motion in rig-space. In Proceedings of the 12th ACM SIGGRAPH/eurographics symposium on computer animation (pp. 165–171). ACM: Anaheim, California.Google Scholar
  87. 87.
    Müller, M., et al. (2014). Strain based dynamics. In Proceedings of ACM SIGGRAPH/EUROGRAPHICS symposium on computer animation (SCA). Copenhagen.Google Scholar
  88. 88.
    Bender, J., et al. (2014). Position-based simulation of continuous materials. Computers & Graphics, 44, 1–10.CrossRefGoogle Scholar
  89. 89.
    Bouaziz, S., et al. (2012). Shape-up: Shaping discrete geometry with projections. In Computer graphics forum. Wiley Online Library.Google Scholar
  90. 90.
    Schumacher, C., et al. (2012). Efficient simulation of example-based materials. In Proceedings of the ACM SIGGRAPH/eurographics symposium on computer animation. Eurographics Association.Google Scholar
  91. 91.
    Zhang, W., Zheng, J., & Thalmann, N. M. (2015). Real-time subspace integration for example-based elastic material. Computer Graphics Forum, 34(2), 395–404.CrossRefGoogle Scholar
  92. 92.
    Barbič, J., & Popović, J. (2008). Real-time control of physically based simulations using gentle forces. In ACM transactions on graphics (TOG). ACM.Google Scholar
  93. 93.
    Barbič, J., Silva, M. D., & Popović, J. (2009). Deformable object animation using reduced optimal control. ACM Transactions on Graphics, 28(3), 1–9.CrossRefGoogle Scholar
  94. 94.
    Chen, Z., et al. (2014). Physics-inspired adaptive fracture refinement. ACM Transactions on Graphics (TOG), 33(4), 113.Google Scholar
  95. 95.
    Jiménez, P., Thomas, F., & Torras, C. (2001). 3D collision detection: a survey. Computers & Graphics, 25(2), 269–285.CrossRefGoogle Scholar
  96. 96.
    Teschner, M., et al. (2005). Collision detection for deformable objects. In Computer graphics forum. Wiley Online Library.Google Scholar
  97. 97.
    Movania, M. M. (2011). OpenCloth: A new open source cloth simulation library. http://code.google.com/p/opencloth/
  98. 98.
    Jernej Barbič, F. S. S. (2012). Daniel Schroeder, Vega FEM library. http://www.jernejbarbic.com/vega
  99. 99.
    Allard, J., et al. (2007). SOFAan open source framework for medical simulation. In J. D. Westwood, et al. (Eds.), Medicine meets virtual reality 15 (pp. 13–18).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Nanyang Technological UniversitySingaporeSingapore
  2. 2.School of Computer EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations