Skip to main content

Surviving Errors with OpenSHMEM

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10007))

Abstract

Unexpected error conditions stem from a variety of underlying causes, including resource exhaustion, network failures, hardware failures, or program errors. As the scale of HPC systems continues to grow, so does the probability of encountering a condition that causes a failure; meanwhile, error recovery and run-through failure management are becoming mature, and interoperable HPC programming paradigms are beginning to feature advanced error management. As a result from these developments, it becomes increasingly desirable to gracefully handle error conditions in OpenSHMEM. In this paper, we present the design and rationale behind an extension of the OpenSHMEM API that can (1) notify user code of unexpected erroneous conditions, (2) permit customized user response to errors without incurring overhead on an error-free execution path, (3) propagate the occurence of an error condition to all Processing Elements, and (4) consistently close the erroneous epoch in order to resume the application.

M.G. Venkata—This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Amarasinghe, S., et al.: Exascale programming challenges. In: Proceedings of the Workshop on Exascale Programming Challenges, Marina del Rey, CA, USA. U.S Department of Energy, Office of Science, Office of Advanced Scientific Computing Research (ASCR), July 2011. http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/ProgrammingChallengesWorkshopReport.pdf

  2. Balaji, P., Buntinas, D., Goodell, D., Gropp, W., Krishna, J., Lusk, E., Thakur, R.: PMI: a scalable parallel process-management interface for extreme-scale systems. In: Keller, R., Gabriel, E., Resch, M., Dongarra, J. (eds.) EuroMPI 2010. LNCS, vol. 6305, pp. 31–41. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15646-5_4. http://dl.acm.org/citation.cfm?id=1894122.1894127

    Chapter  Google Scholar 

  3. Bautista-Gomez, L., Tsuboi, S., Komatitsch, D., Cappello, F., Maruyama, N., Matsuoka, S.: FTI: high performance fault tolerance interface for hybrid systems. In: International Conference on High Performance Computing, Networking, Storage and Analysis, SC 2011 (2011)

    Google Scholar 

  4. Benoit, A., Cavelan, A., Robert, Y., Sun, H.: Assessing general-purpose algorithms to cope with fail-stop and silent errors. In: Jarvis, S.A., Wright, S.A., Hammond, S.D. (eds.) PMBS 2014. LNCS, vol. 8966, pp. 215–236. Springer, Heidelberg (2015). doi:10.1007/978-3-319-17248-4_11

    Google Scholar 

  5. Bland, W., Bouteiller, A., Herault, T., Bosilca, G., Dongarra, J.: Post-failure recovery of MPI communication capability: design and rationale. Int. J. High Perform. Comput. Appl. 27(3), 244–254 (2013). http://hpc.sagepub.com/content/27/3/244.abstract

    Article  Google Scholar 

  6. Bosilca, G., Bouteiller, A., Guermouche, A., Herault, T., Sens, P., Robert, Y., Dongarra, J.J.: Failure detection and propagation in HPC systems. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2016. ACM, New York (2016, to appear)

    Google Scholar 

  7. Bosilca, G., Bouteiller, A., Brunet, E., Cappello, F., Dongarra, J., Guermouche, A., Herault, T., Robert, Y., Vivien, F., Zaidouni, D.: Unified model for assessing checkpointing protocols at extreme-scale. Concur. Comput. Pract. Exp. 26(17), 2772–2791 (2014). doi:10.1002/cpe.3173

    Article  Google Scholar 

  8. Bouteiller, A., Bosilca, G., Dongarra, J.J.: Plan B: Interruption of ongoing MPI operations to support failure recovery. In: Proceedings of the 22nd European MPI Users’ Group Meeting, EuroMPI 2015, pp. 11:1–11:9 (2015). http://doi.acm.org/10.1145/2802658.2802668

  9. Bouteiller, A., Herault, T., Bosilca, G., Dongarra, J.J.: Correlated set coordination in fault tolerant message logging protocols for many-core clusters. Concur. Comput. Pract. Exp. 25(4), 572–585 (2013). doi:10.1002/cpe.2859

    Article  Google Scholar 

  10. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems. J. ACM (JACM) 43(2), 225–267 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, Z.: Online-ABFT: an online algorithm based fault tolerance scheme for soft error detection in iterative methods. In: Proceedings of the PPoPP, pp. 167–176 (2013)

    Google Scholar 

  12. Davies, T., Karlsson, C., Liu, H., Ding, C., Chen, Z.: High performance linpack benchmark: a fault tolerant implementation without checkpointing. In: Proceedings of the 25th ACM International Conference on Supercomputing (ICS 2011). ACM (2011)

    Google Scholar 

  13. Dongarra, J., et al.: The international exascale software project roadmap. Int. J. High Perform. Comput. Appl. 25(1), 3–60 (2011). doi:10.1177/1094342010391989

    Article  Google Scholar 

  14. Ferreira, K., Stearley, J., Laros III, J.H., Oldfield, R., Pedretti, K., Brightwell, R., Riesen, R., Bridges, P.G., Arnold, D.: Evaluating the viability of process replication reliability for exascale systems. In: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2011, pp. 44:1–44:12. ACM, New York (2011). http://doi.acm.org/10.1145/2063384.2063443

  15. Fiala, D., Mueller, F., Engelmann, C., Riesen, R., Ferreira, K., Brightwell, R.: Detection and correction of silent data corruption for large-scale high-performance computing. In: Proceedings of the SC 2012, p. 78 (2012)

    Google Scholar 

  16. Herault, T., Bouteiller, A., Bosilca, G., Gamell, M., Teranishi, K., Parashar, M., Dongarra, J.: Practical scalable consensus for pseudo-synchronous distributed systems. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2015, pp. 31:1–31:12. ACM, New York (2015). http://doi.acm.org/10.1145/2807591.2807665

  17. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun. ACM 21(7), 558–565 (1978)

    Article  MATH  Google Scholar 

  18. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982). doi:10.1145/357172.357176

    Article  MATH  Google Scholar 

  19. Moody, A., Bronevetsky, G., Mohror, K., de Supinski, B.R.: Design, modeling, and evaluation of a scalable multi-level checkpointing system. In: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–11 (2010). http://dx.doi.org/10.1109/SC.2010.18

  20. Petrini, F., Frachtenberg, E., Hoisie, A., Coll, S.: Performance evaluation of the quadrics interconnection network. Cluster Comput. 6(2), 125–142 (2003). doi:10.1023/A:1022852505633

    Article  Google Scholar 

  21. Poole, S.W., Hernandez, O.R., Kuehn, J.A., Shipman, G.M., Curtis, A., Feind, K.: OpenSHMEM - toward a unified RMA model. In: Padua, D.A. (ed.) Encyclopedia of Parallel Computing, pp. 1379–1391. Springer, Heidelberg (2011)

    Google Scholar 

  22. Schroeder, B., Gibson, G.: Understanding failures in petascale computers. J. Phys.: Conf. Ser. 78, 12–22 (2007). IOP Publishing

    Google Scholar 

  23. Shahzad, F., Kreutzer, M., Zeiser, T., Machado, R., Pieper, A., Hager, G., Wellein, G.: Building a fault tolerant application using the GASPI communication layer. In: Proceedings of the 2015 IEEE International Conference on Cluster Computing, CLUSTER 2015, pp. 580–587. IEEE Computer Society, Washington (2015). http://dx.doi.org/10.1109/CLUSTER.2015.106

  24. Zheng, Z., Chien, A.A., Teranishi, K.: Fault tolerance in an inner-outer solver: a GVR-enabled case study. In: Daydé, M., Marques, O., Nakajima, K. (eds.) VECPAR 2014. LNCS, vol. 8969, pp. 124–132. Springer, Heidelberg (2015). doi:10.1007/978-3-319-17353-5_11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurelien Bouteiller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Bouteiller, A., Bosilca, G., Venkata, M.G. (2016). Surviving Errors with OpenSHMEM. In: Gorentla Venkata, M., Imam, N., Pophale, S., Mintz, T. (eds) OpenSHMEM and Related Technologies. Enhancing OpenSHMEM for Hybrid Environments. OpenSHMEM 2016. Lecture Notes in Computer Science(), vol 10007. Springer, Cham. https://doi.org/10.1007/978-3-319-50995-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50995-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50994-5

  • Online ISBN: 978-3-319-50995-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics