Skip to main content

Circulating Free Tumor DNA (ctDNA): The Real-Time Liquid Biopsy

  • Chapter
  • First Online:
Liquid Biopsies in Solid Tumors

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

It is now well established that DNA is shed or secreted into the circulation in both normal and disease states. However, the ability to exploit this knowledge for use in clinical medicine has only recently been made possible through the advent of new technologies. Currently, cell-free DNA is being developed as a “real-time liquid biopsy” biomarker to help guide clinical decisions in diverse fields such as prenatal screening, cancer, and solid organ transplantation. The ability of cell-free circulating tumor DNA to be measured quantitatively and qualitatively presents great opportunities in clinical oncology for using blood to monitor tumor burden and assess response to therapies. Here we provide a short review of historic and recent studies demonstrating the clinical potential of detecting and measuring cell-free DNA, with a specific focus on the use of circulating tumor DNA in oncology and cancer management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kohler C, Barekati Z, Radpour R et al (2011) Cell-free DNA in the circulation as a potential cancer biomarker. Anticancer Res 31:2623–2628

    CAS  PubMed  Google Scholar 

  2. Diehl F, Schmidt K, Choti MA et al (2008) Circulating mutant DNA to assess tumor dynamics. Nat Med 14:985–990

    Article  CAS  PubMed  Google Scholar 

  3. Heitzer E, Ulz P, Geigl JB (2015) Circulating tumor DNA as a liquid biopsy for cancer. Clin Chem 61:112–123

    Article  CAS  PubMed  Google Scholar 

  4. Mandel P, Metais P (1948) C R Seances Soc Biol Fil 142:241–243

    CAS  PubMed  Google Scholar 

  5. Leon SA, Shapiro B, Sklaroff DM et al (1977) Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 37:646–650

    CAS  PubMed  Google Scholar 

  6. Beaver JA, Jelovac D, Balukrishna S et al (2014) Detection of cancer DNA in plasma of patients with early-stage breast cancer. Clin Cancer Res 20:2643–2650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Benesova L, Belsanova B, Suchanek S et al (2013) Mutation-based detection and monitoring of cell-free tumor DNA in peripheral blood of cancer patients. Anal Biochem 433:227–234

    Article  CAS  PubMed  Google Scholar 

  8. Board RE, Wardley AM, Dixon JM et al (2010) Detection of PIK3CA mutations in circulating free DNA in patients with breast cancer. Breast Cancer Res Treat 120:461–467

    Article  CAS  PubMed  Google Scholar 

  9. Butler TM, Johnson-Camacho K, Peto M et al (2015) Exome sequencing of cell-free DNA from metastatic cancer patients identifies clinically actionable mutations distinct from primary disease. PLoS One 10:e0136407

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chu D, Paoletti C, Gersch C et al (2015) ESR1 mutations in circulating plasma tumor DNA from metastatic breast cancer patients. Clin Cancer Res 22(4):993

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen WW, Balaj L, Liau LM et al (2013) BEAMing and droplet digital PCR analysis of mutant IDH1 mRNA in glioma patient serum and cerebrospinal fluid extracellular vesicles. Mol Ther Nucleic Acids 2:e109

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kin C, Kidess E, Poultsides GA et al (2013) Colorectal cancer diagnostics: biomarkers, cell-free DNA, circulating tumor cells and defining heterogeneous populations by single-cell analysis. Expert Rev Mol Diagn 13:581–599

    Article  CAS  PubMed  Google Scholar 

  13. Karakas B, Qubbaj W, Al-Hassan S et al (2015) Noninvasive digital detection of fetal DNA in plasma of 4-week-pregnant women following in vitro fertilization and embryo transfer. PLoS One 10:e0126501

    Article  PubMed  PubMed Central  Google Scholar 

  14. Park HJ, Shim SS, Cha DH (2015) Combined screening for early detection of pre-eclampsia. Int J Mol Sci 16:17952–17974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stokowski R, Wang E, White K et al (2015) Clinical performance of non-invasive prenatal testing (NIPT) using targeted cell-free DNA analysis in maternal plasma with microarrays or next generation sequencing (NGS) is consistent across multiple controlled clinical studies. Prenat Diagn 35(12):1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gielis EM, Ledeganck KJ, De Winter BY et al (2015) Cell-free DNA: an upcoming biomarker in transplantation. Am J Transplant 15:2541–2551

    Article  CAS  PubMed  Google Scholar 

  17. Pyle A, Brennan R, Kurzawa-Akanbi M et al (2015) Reduced CSF mitochondrial DNA is a biomarker for early-stage Parkinson’s disease. Ann Neurol 78(6):1000

    Article  CAS  PubMed  Google Scholar 

  18. Christenson ES, James T, Agrawal V et al (2015) Use of biomarkers for the assessment of chemotherapy-induced cardiac toxicity. Clin Biochem 48:223–235

    Article  CAS  PubMed  Google Scholar 

  19. Hindson CM, Chevillet JR, Briggs HA et al (2013) Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods 10:1003–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Legendre C, Gooden GC, Johnson K et al (2015) Whole-genome bisulfite sequencing of cell-free DNA identifies signature associated with metastatic breast cancer. Clin Epigenetics 7:100

    Article  PubMed  PubMed Central  Google Scholar 

  21. Beaver JA, Park BH (2015) Detecting plasma tumor DNA in early-stage breast cancer—reply. Clin Cancer Res 21:3570

    Article  PubMed  Google Scholar 

  22. Wang Y, Springer S, Zhang M et al (2015) Detection of tumor-derived DNA in cerebrospinal fluid of patients with primary tumors of the brain and spinal cord. Proc Natl Acad Sci U S A 112:9704–9709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. El Messaoudi S, Rolet F, Mouliere F et al (2013) Circulating cell free DNA: preanalytical considerations. Clin Chim Acta 424:222–230

    Article  CAS  PubMed  Google Scholar 

  24. Toro PV, Erlanger B, Beaver JA et al (2015) Comparison of cell stabilizing blood collection tubes for circulating plasma tumor DNA. Clin Biochem 48(15):993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Forshew T, Murtaza M, Parkinson C et al (2012) Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med 4:136ra68

    Article  PubMed  Google Scholar 

  26. Kinde I, Wu J, Papadopoulos N et al (2011) Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci U S A 108:9530–9535

    Article  PubMed  PubMed Central  Google Scholar 

  27. Schmitt MW, Kennedy SR, Salk JJ et al (2012) Detection of ultra-rare mutations by next-generation sequencing. Proc Natl Acad Sci U S A 109:14508–14513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gerlinger M, Rowan AJ, Horswell S et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bettegowda C, Sausen M, Leary RJ et al (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 6:224ra224

    Article  Google Scholar 

  30. Board RE, Thelwell NJ, Ravetto PF et al (2008) Multiplexed assays for detection of mutations in PIK3CA. Clin Chem 54:757–760

    Article  CAS  PubMed  Google Scholar 

  31. Dressman D, Yan H, Traverso G et al (2003) Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci U S A 100:8817–8822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Higgins MJ, Jelovac D, Barnathan E et al (2012) Detection of tumor PIK3CA status in metastatic breast cancer using peripheral blood. Clin Cancer Res 18:3462–3469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dawson SJ, Tsui DW, Murtaza M et al (2013) Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 368:1199–1209

    Article  CAS  PubMed  Google Scholar 

  34. Murtaza M, Dawson SJ, Tsui DW et al (2013) Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497:108–112

    Article  CAS  PubMed  Google Scholar 

  35. Wei Z, Shah N, Deng C et al (2016) Circulating DNA addresses cancer monitoring in non small cell lung cancer patients for detection and capturing the dynamic changes of the disease. Springerplus 5:531

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rothé F, Laes J-F, Lambrechts D, Smeets D, Vincent D, Maetens M, Fumagalli D, Michiels S, Stylianos D, Moerman C, Detiffe J-P, Larsimont D, Awada A, Piccart M, Sotiriou C, Ignatiadis M (2014) Plasma circulating tumor DNA as an alternative to metastatic biopsies for mutational analysis in breast cancer. Ann Oncol 25(10):1959

    Article  PubMed  Google Scholar 

  37. Pentsova EI, Shah RH, Tang J et al (2016) Evaluating cancer of the central nervous system through next-generation sequencing of cerebrospinal fluid. J Clin Oncol 34(20):2404

    Article  PubMed  Google Scholar 

  38. Kinde I, Bettegowda C, Wang Y et al (2013) Evaluation of DNA from the Papanicolaou test to detect ovarian and endometrial cancers. Sci Transl Med 5:167ra164

    Article  Google Scholar 

  39. Delgado PO, Alves BC, Gehrke Fde S et al (2013) Characterization of cell-free circulating DNA in plasma in patients with prostate cancer. Tumour Biol 34:983–986

    Article  CAS  PubMed  Google Scholar 

  40. Garcia-Murillas I, Schiavon G, Weigelt B et al (2015) Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci Transl Med 7:302ra133

    Article  PubMed  Google Scholar 

  41. Olsson E, Winter C, George A et al (2015) Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease. EMBO Mol Med 7:1034–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lynch TJ, Bell DW, Sordella R et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    Article  CAS  PubMed  Google Scholar 

  43. Paez JG, Janne PA, Lee JC et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500

    Article  CAS  PubMed  Google Scholar 

  44. Pao W, Miller V, Zakowski M et al (2004) EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A 101:13306–13311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Taniguchi K, Uchida J, Nishino K et al (2011) Quantitative detection of EGFR mutations in circulating tumor DNA derived from lung adenocarcinomas. Clin Cancer Res 17:7808–7815

    Article  CAS  PubMed  Google Scholar 

  46. Pao W, Miller VA, Politi KA et al (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2:e73

    Article  PubMed  PubMed Central  Google Scholar 

  47. Siravegna G, Mussolin B, Buscarino M et al (2015) Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat Med 21:795–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Misale S, Yaeger R, Hobor S et al (2012) Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486:532–536

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gevensleben H, Garcia-Murillas I, Graeser MK et al (2013) Noninvasive detection of HER2 amplification with plasma DNA digital PCR. Clin Cancer Res 19:3276–3284

    Article  CAS  PubMed  Google Scholar 

  50. Tie J, Kinde I, Wang Y et al (2015) Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer. Ann Oncol 26(8):1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wyatt AW, Azad AA, Volik SV et al (2016) Genomic alterations in cell-free DNA and enzalutamide resistance in castration-resistant prostate cancer. JAMA Oncol 2(12):1598

    Article  PubMed  Google Scholar 

  52. Li S, Shen D, Shao J et al (2013) Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep 4:1116–1130

    Article  CAS  PubMed  Google Scholar 

  53. Merenbakh-Lamin K, Ben-Baruch N, Yeheskel A et al (2013) D538G mutation in estrogen receptor-alpha: A novel mechanism for acquired endocrine resistance in breast cancer. Cancer Res 73:6856–6864

    Article  CAS  PubMed  Google Scholar 

  54. Robinson DR, Wu YM, Vats P et al (2013) Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat Genet 45:1446–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Toy W, Shen Y, Won H et al (2013) ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat Genet 45:1439–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jeselsohn R, Yelensky R, Buchwalter G et al (2014) Emergence of constitutively active estrogen receptor-alpha mutations in pretreated advanced estrogen receptor-positive breast cancer. Clin Cancer Res 20:1757–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sefrioui D, Perdrix A, Sarafan-Vasseur N et al (2015) Short report: monitoring ESR1 mutations by circulating tumor DNA in aromatase inhibitor resistant metastatic breast cancer. Int J Cancer 137:2513–2519

    Article  CAS  PubMed  Google Scholar 

  58. Guttery DS, Page K, Hills A et al (2015) Noninvasive detection of activating estrogen receptor 1 (ESR1) mutations in estrogen receptor-positive metastatic breast cancer. Clin Chem 61:974–982

    Article  CAS  PubMed  Google Scholar 

  59. Schiavon G, Hrebien S, Garcia-Murillas I et al (2015) Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer. Sci Transl Med 7:313ra182

    Article  PubMed  PubMed Central  Google Scholar 

  60. Spoerke JM, Gendreau S, Walter K et al (2016) Heterogeneity and clinical significance of ESR1 mutations in ER-positive metastatic breast cancer patients receiving fulvestrant. Nat Commun 7:11579

    Article  PubMed  PubMed Central  Google Scholar 

  61. Fribbens C, O'Leary B, Kilburn L et al (2016) Plasma ESR1 mutations and the treatment of estrogen receptor-positive advanced breast cancer. J Clin Oncol 34(25):2961

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Avon Foundation and the Canney Foundation. We would also like to thank and acknowledge the support of NIH P30 CA006973, the Eddie and Sandy Garcia Charitable Foundation, the Commonwealth Foundation, the Santa Fe Foundation, the Marcie and Ellen Foundation, the Helen Golde Trust, and the Robin Page/Lebor Foundation. None of the funding sources influenced the design, interpretation, or submission of this manuscript.

Disclosures

B.H.P. is a member of the scientific advisory boards for Horizon Discovery, LTD and Loxo Oncology; is a consultant for Foundation Medicine, Inc.; and has research contracts with Genomic Health, Inc. and Foundation Medicine, Inc. Under separate licensing agreements between Horizon Discovery, LTD and the Johns Hopkins University, B.H.P. is entitled to a share of royalties received by the university on sales of products. The terms of this arrangement are being managed by the Johns Hopkins University, in accordance with its conflict of interest policies. B.H.P. also has ownership interest in Loxo Oncology. K.K.-S. declares no potential conflicts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Ho Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kyker-Snowman, K., Park, B.H. (2017). Circulating Free Tumor DNA (ctDNA): The Real-Time Liquid Biopsy. In: Cristofanilli, M. (eds) Liquid Biopsies in Solid Tumors. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-50956-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50956-3_6

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-50955-6

  • Online ISBN: 978-3-319-50956-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics