Skip to main content

Detecting and Monitoring Circulating Stromal Cells from Solid Tumors Using Blood-Based Biopsies in the Twenty-First Century: Have Circulating Stromal Cells Come of Age?

  • Chapter
  • First Online:
Book cover Liquid Biopsies in Solid Tumors

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Recent advancements in profiling genomic and proteomic aberrations of circulating tumor cells (CTCs) have provided a greater understanding of the underlying biology of tumor dissemination and subsequent metastases. Unfortunately, cancer is a complex disease with cancer growth, progression, and spread all intricately dependent not only on cancer cells, but also on a variety of nonmalignant cell types that make up the cancer environment. The concept of a “liquid biopsy,” which has recently gained great traction in the field of cancer research, revolves around analyzing the proteomic and genomic characteristics of CTCs and circulating tumor debris (i.e., circulating tumor DNA, tumor exosomes). However, a key concern of this single focus is the loss of vital information provided by nonmalignant cancer-associated cells, i.e., circulating stromal cells and circulating immune cells. Even though non-cancer immune cells are required contributors to the malignant behavior of tumors and are in many cases “abnormal” themselves, why is their study in “liquid biopsies” largely ignored? In this new era of targeted cancer therapies, i.e., immunotherapies, which target tumor cells and stromal cells, diagnostics for personalized treatment requires the ability to effectively account for both pro-cancerous nonmalignant cells and malignant cells. Given that blood harbors several circulating tumor-derived cells, representing a circulating metastatic niche, we must reevaluate what defines a “blood-based biopsy”(BBB) beyond conventional liquid biopsies to include circulating stromal cells as potential diagnostic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y, Hu G, Sun Y (2015) New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med 13:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Dvorak HF (1986) Tumors: wounds that do not heal. N Engl J Med 315(26):1650–1659

    Article  CAS  PubMed  Google Scholar 

  3. Fidler IJ (1970) Metastasis: quantitative analysis of distribution and fate of tumor embolilabeled with 125 I-5-iodo-2'-deoxyuridine. J Natl Cancer Inst 45(4):773–782

    CAS  PubMed  Google Scholar 

  4. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  5. Tlsty TD, Coussens LM (2006) Tumor stroma and regulation of cancer development. Annu Rev Pathol Mech Dis 1:119–150

    Article  CAS  Google Scholar 

  6. Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147(2):275–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ao Z, Shah SH, Machlin LM, Parajuli R, Miller PC, Rawal S, Williams AJ, Cote RJ, Lippman ME, Datar RH (2015) Identification of cancer-associated fibroblasts in circulating blood from patients with metastatic breast cancer. Cancer Res 75(22):4681–4687

    Article  CAS  PubMed  Google Scholar 

  8. Beerepoot L, Mehra N, Vermaat J, Zonnenberg B, Gebbink M, Voest E (2004) Increased levels of viable circulating endothelial cells are an indicator of progressive disease in cancer patients. Ann Oncol 15(1):139–145

    Article  CAS  PubMed  Google Scholar 

  9. Goon PK, Boos CJ, Stonelake PS, Blann AD, GY Lip (2006) Detection and quantification of mature circulating endothelial cells using flow cytometry and immunomagnetic beads: a methodological comparison. Thromb Haemost 96(1):45

    Google Scholar 

  10. Kraan J, Sleijfer S, Foekens JA, Gratama JW (2012) Clinical value of circulating endothelial cell detection in oncology. Drug Discov Today 17(13–14):710–717

    Article  PubMed  Google Scholar 

  11. Leers MP, Nap M, Herwig R, Delaere K, Nauwelaers F (2008) Circulating PSA-containing macrophages as a possible target for the detection of prostate cancer: a three-color/five-parameter flow cytometric study on peripheral blood samples. Am J Clin Pathol 129(4):649–656

    Article  PubMed  Google Scholar 

  12. Masouleh BK, Baraniskin A, Schmiegel W, Schroers R (2010) Quantification of circulating endothelial progenitor cells in human peripheral blood: establishing a reliable flow cytometry protocol. J Immunol Methods 357(1):38–42

    Article  CAS  PubMed  Google Scholar 

  13. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4(1):71–78

    Article  CAS  PubMed  Google Scholar 

  14. Schauer IG, Sood AK, Mok S, Liu J (2011) Cancer-associated fibroblasts and their putative role in potentiating the initiation and development of epithelial ovarian cancer. Neoplasia 13(5):393–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sone S, Key ME (1986) Antitumor and phagocytic activities of rat alveolar macrophage subpopulations separated on a discontinuous gradient of bovine serum albumin. J Biol Response Mod 5(6):595–603

    CAS  PubMed  Google Scholar 

  16. De Palma M, Mazzieri R, Politi LS, Pucci F, Zonari E, Sitia G, Mazzoleni S, Moi D, Venneri MA, Indraccolo S et al (2008) Tumor-targeted interferon-alpha delivery by Tie2-expressing monocytes inhibits tumor growth and metastasis. Cancer Cell 14(4):299–311

    Article  CAS  PubMed  Google Scholar 

  17. De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M, Naldini L (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8(3):211–226

    Article  CAS  PubMed  Google Scholar 

  18. Duda DG, Duyverman AM, Kohno M, Snuderl M, Steller EJ, Fukumura D, Jain RK (2010) Malignant cells facilitate lung metastasis by bringing their own soil. Proc Natl Acad Sci U S A 107(50):21677–21682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hamm A, Prenen H, Van Delm W, Di Matteo M, Wenes M, Delamarre E, Schmidt T, Weitz J, Sarmiento R, Dezi A (2016) Tumour-educated circulating monocytes are powerful candidate biomarkers for diagnosis and disease follow-up of colorectal cancer. Gut 65(6):990–1000

    Article  PubMed  Google Scholar 

  20. Harney AS, Arwert EN, Entenberg D, Wang Y, Guo P, Qian B-Z, Oktay MH, Pollard JW, Jones JG, Condeelis JS (2015) Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage–derived VEGFA. Cancer Discov 5(9):932–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Szulczewski JM, Inman DR, Entenberg D, Ponik SM, Aguirre-Ghiso J, Castracane J, Condeelis J, Eliceiri KW, Keely PJ (2016) In vivo visualization of stromal macrophages via label-free FLIM-based metabolite imaging. Sci Rep 6:25086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41(1):49–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E (2015) Nivolumab versus docetaxel in advanced nonsquamous non–small-cell lung cancer. N Engl J Med 373(17):1627–1639

    Article  CAS  PubMed  Google Scholar 

  24. Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Holgado E et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373(2):123–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Callahan MK, Ott PA, Odunsi K, Bertolini SV, Pan LS, Venhaus RR, Karakunnel JJ, Hodi FS, Wolchok JD (2014) A phase 1 study to evaluate the safety and tolerability of MEDI4736, an anti-PD-L1 antibody, in combination with tremelimumab in patients with advanced solid tumors. In: ASCO Annual Meeting Proceedings 2014:TPS3120

    Google Scholar 

  26. Rizvi NA, Mazières J, Planchard D, Stinchcombe TE, Dy GK, Antonia SJ, Horn L, Lena H, Minenza E, Mennecier B (2015) Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol 16(3):257–265

    Article  CAS  PubMed  Google Scholar 

  27. Rosenberg SA (2014) Decade in review—cancer immunotherapy: Entering the mainstream of cancer treatment. Nat Rev Clin Oncol 11(11):630–632

    Article  PubMed  Google Scholar 

  28. Sundar R, Cho B-C, Brahmer JR, Soo RA (2015) Nivolumab in NSCLC: latest evidence and clinical potential. Therapeutic Adv Med Oncol 7(2):85–96

    Article  CAS  Google Scholar 

  29. Adams DL, Edelman MJ, Fang P, Jiang W, He J, Xu T, Gao H, Reuben JM, Qiao Y, Hahn S, Lin S (2016) Sequential tracking of PD-L1 expression and RAD50 induction in CTCs and circulating stromal cells of lung cancer patients during treatment with radiotherapy. Cancer Res 76(14 Supplement):4990–4990

    Google Scholar 

  30. Demaria S, Golden EB, Formenti SC (2015) Role of local radiation therapy in cancer immunotherapy. JAMA Oncol 1(9):1325–1332

    Article  PubMed  Google Scholar 

  31. Derer A, Deloch L, Rubner Y, Fietkau R, Frey B, Gaipl US (2015) Radio-immunotherapy-induced immunogenic cancer cells as basis for induction of systemic anti-tumor immune responses–pre-clinical evidence and ongoing clinical applications. Front Immunol 6:505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Lin SH, He J, Edelman M, Xu T, Gao H, Reuben J, Qiao Y, Liu H, Amstutz P, Hahn S, Adams DL (2015) Sequential assessment of DNA damage response and PD-L1 expression in circulating tumor cells of lung cancer patients during Radiotherapy. J Thorac Oncol:S266–S267

    Google Scholar 

  33. Ma W, Gilligan BM, Yuan J, Li T (2016) Current status and perspectives in translational biomarker research for PD-1/PD-L1 immune checkpoint blockade therapy. J Hematol Oncol 9(1):1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Adams DL, Stefansson S, Haudenschild C, Martin SS, Charpentier M, Chumsri S, Cristofanilli M, Tang CM, Alpaugh RK (2015) Cytometric characterization of circulating tumor cells captured by microfiltration and their correlation to the cellsearch((R)) CTC test. Cytometry A 87(2):137–144

    Article  PubMed  CAS  Google Scholar 

  35. Adams DL, Zhu P, Makarova OV, Martin SS, Charpentier M, Chumsri S, Li S, Amstutz P, Tang CM (2014) The systematic study of circulating tumor cell isolation using lithographic microfilters. RSC Adv 9:4334–4342

    Article  PubMed  PubMed Central  Google Scholar 

  36. Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, Tibbe AG, Uhr JW, Terstappen LW (2004) Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res 10(20):6897–6904

    Article  PubMed  Google Scholar 

  37. Cohen SJ, Alpaugh RK, Gross S, O'Hara SM, Smirnov DA, Terstappen LW, Allard WJ, Bilbee M, Cheng JD, Hoffman JP et al (2006) Isolation and characterization of circulating tumor cells in patients with metastatic colorectal cancer. Clin Colorectal Cancer 6(2):125–132

    Article  CAS  PubMed  Google Scholar 

  38. Cohen SJ, Punt CJ, Iannotti N, Saidman BH, Sabbath KD, Gabrail NY, Picus J, Morse M, Mitchell E, Miller MC et al (2008) Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol Off J Am Soc Clin Oncol 26(19):3213–3221

    Article  Google Scholar 

  39. Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, Reuben JM, Doyle GV, Allard WJ, Terstappen LW et al (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351(8):781–791

    Article  CAS  PubMed  Google Scholar 

  40. Danila DC, Fleisher M, Scher HI (2011) Circulating tumor cells as biomarkers in prostate cancer. Clin Cancer Res 17(12):3903–3912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. de Bono JS, Scher HI, Montgomery RB, Parker C, Miller MC, Tissing H, Doyle GV, Terstappen LW, Pienta KJ, Raghavan D (2008) Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res 14(19):6302–6309

    Article  PubMed  CAS  Google Scholar 

  42. Farace F, Massard C, Vimond N, Drusch F, Jacques N, Billiot F, Laplanche A, Chauchereau A, Lacroix L, Planchard D et al (2011) A direct comparison of CellSearch and ISET for circulating tumour-cell detection in patients with metastatic carcinomas. Br J Cancer 105(6):847–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ferreira MM, Ramani VC, Jeffrey SS (2016) Circulating Tumor Cell Technologies. Mol Oncol 10(3):374–394

    Article  CAS  PubMed  Google Scholar 

  44. Kagan M, Howard D, Bendele T, Mayes J, Silvia J, Repollet M, Doyle J, Allard J, Tu N, Bui T et al (2002) A sample preparation and analysis system for identification of circulating tumor cells. J Clin Ligand Assay 25(1):104–110

    Google Scholar 

  45. Krebs MG, Metcalf RL, Carter L, Brady G, Blackhall FH, Dive C (2014) Molecular analysis of circulating tumour cells [mdash] biology and biomarkers. Nat Rev Clin Oncol 11(3):129–144

    Article  CAS  PubMed  Google Scholar 

  46. Lianidou ES, Markou A (2011) Circulating tumor cells in breast cancer: detection systems, molecular characterization, and future challenges. Clin Chem 57(9):1242–1255

    Article  CAS  PubMed  Google Scholar 

  47. Lianidou ES, Markou A (2011) Circulating tumor cells as emerging tumor biomarkers in breast cancer. Clin Chem Lab Med 49(10):1579–1590

    Article  CAS  PubMed  Google Scholar 

  48. MassardC, OulhenM, Le MoulecS, AugerN, FoulonS, Abou-LovergneA, BilliotF, ValentA, MartyV, LoriotY (2016) Phenotypic and genetic heterogeneity of tumor tissue and circulating tumor cells in patients with metastatic castrationresistant prostate cancer: a report from the PETRUS prospective study. Oncotarget

    Google Scholar 

  49. O’Flaherty JD, Gray S, Richard D, Fennell D, O’Leary JJ, Blackhall FH, O’Byrne KJ (2012) Circulating tumour cells, their role in metastasis and their clinical utility in lung cancer. Lung Cancer 76(1):19–25

    Article  PubMed  Google Scholar 

  50. Paoletti C, Muniz MC, Thomas DG, Griffith KA, Kidwell KM, Tokudome N, Brown ME, Aung K, Miller MC, Blossom DL et al (2015) Development of circulating tumor cell-endocrine therapy index in patients with hormone receptor-positive breast cancer. Clin Cancer Res 21(11):2487–2498

    Article  CAS  PubMed  Google Scholar 

  51. Paterlini-Brechot P, Benali NL (2007) Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Lett 253(2):180–204

    Article  CAS  PubMed  Google Scholar 

  52. Punnoose EA, Atwal SK, Spoerke JM, Savage H, Pandita A, Yeh RF, Pirzkall A, Fine BM, Amler LC, Chen DS et al (2010) Molecular biomarker analyses using circulating tumor cells. PLoS One 5(9):e12517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Stott SL, Lee RJ, Nagrath S, Yu M, Miyamoto DT, Ulkus L, Inserra EJ, Ulman M, Springer S, Nakamura Z et al (2010) Isolation and characterization of circulating tumor cells from patients with localized and metastatic prostate cancer. Sci Transl Med 2(25):25ra23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, Isakoff SJ, Ciciliano JC, Wells MN, Shah AM et al (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339(6119):580–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yu M, Stott S, Toner M, Maheswaran S, Haber DA (2011) Circulating tumor cells: approaches to isolation and characterization. J Cell Biol 192(3):373–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Coumans FA, Doggen CJ, Attard G, de Bono JS, Terstappen LW (2010) All circulating EpCAM+CK+CD45- objects predict overall survival in castration-resistant prostate cancer. Ann Oncol 21(9):1851–1857

    Article  CAS  PubMed  Google Scholar 

  57. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5):555–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lanman RB, Mortimer SA, Zill OA, Sebisanovic D, Lopez R, Blau S, Collisson EA, Divers SG, Hoon DS, Kopetz ES (2015) Analytical and clinical validation of a digital sequencing panel for quantitative, highly accurate evaluation of cell-free circulating tumor DNA. PLoS One 10(10):e0140712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Stefansson S, Adams DL, Tang C-M (2013) Isolation of Low Abundance Proteins and Cells Using Buoyant Glass Microbubble Chromatography. Chromatogr Res Int 2013:1–6

    Article  CAS  Google Scholar 

  60. Volik S, Alcaide M, Morin RD, Collins CC (2016) Cell-free DNA (cfDNA): clinical significance and utility in cancer shaped by emerging technologies. Mol Cancer Res 4(10):898–908

    Article  CAS  Google Scholar 

  61. Melo SA, Sugimoto H, O’Connell JT, Kato N, Villanueva A, Vidal A, Qiu L, Vitkin E, Perelman LT, Melo CA (2014) Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer cell 26(5):707–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Webber J, Steadman R, Mason MD, Tabi Z, Clayton A (2010) Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res 70(23):9621–9630

    Article  CAS  PubMed  Google Scholar 

  63. Adams DL, Adams DK, Alpaugh RK, Cristofanilli M, Martin SS, Chumsri S, Tang CM, Marks JR (2016) Circulating Cancer-Associated Macrophage-Like Cells Differentiate Malignant Breast Cancer and Benign Breast Conditions. Cancer Epidemiol Biomark Prev 25(7):1037–1042

    Article  CAS  Google Scholar 

  64. Adams DL, Martin SS, Alpaugh RK, Charpentier M, Tsai S, Bergan RC, Ogden IM, Catalona W, Chumsri S, Tang CM et al (2014) Circulating giant macrophages as a potential biomarker of solid tumors. Proc Natl Acad Sci U S A 111(9):3514–3519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bethel K, Luttgen MS, Damani S, Kolatkar A, Lamy R, Sabouri-Ghomi M, Topol S, Topol EJ, Kuhn P (2014) Fluid phase biopsy for detection and characterization of circulating endothelial cells in myocardial infarction. Phys Biol 11(1):016002

    Article  PubMed  PubMed Central  Google Scholar 

  66. Cima I, Kong SL, Sengupta D, Tan IB, Phyo WM, Lee D, Hu M, Iliescu C, Alexander I, Goh WL et al (2016) Tumor-derived circulating endothelial cell clusters in colorectal cancer. Sci Transl Med 8(345):345ra389

    Article  Google Scholar 

  67. Coffelt SB, Wellenstein MD, de Visser KE (2016) Neutrophils in cancer: neutral no more. Nat Rev Cancer 16(7):431–446

    Article  CAS  PubMed  Google Scholar 

  68. Ishii G, Ito TK, Aoyagi K, Fujimoto H, Chiba H, Hasebe T, Fujii S, Nagai K, Sasaki H, Ochiai A (2007) Presence of human circulating progenitor cells for cancer stromal fibroblasts in the blood of lung cancer patients. Stem Cells 25(6):1469–1477

    Article  CAS  PubMed  Google Scholar 

  69. Japink D, Leers MP, Sosef MN, Nap M (2009) CEA in activated macrophages. New diagnostic possibilities for tumor markers in early colorectal cancer. Anticancer Res 29(8):3245–3251

    CAS  PubMed  Google Scholar 

  70. Jones ML, Siddiqui J, Pienta KJ, Getzenberg RH (2013) Circulating fibroblast-like cells in men with metastatic prostate cancer. Prostate 73(2):176–181

    Article  CAS  PubMed  Google Scholar 

  71. Rowand JL, Martin G, Doyle GV, Miller MC, Pierce MS, Connelly MC, Rao C, Terstappen LW (2007) Endothelial cells in peripheral blood of healthy subjects and patients with metastatic carcinomas. Cytometry A 71(2):105–113

    Article  PubMed  Google Scholar 

  72. Strijbos M, Gratama J-W, Kraan J, Lamers C, Den Bakker M, Sleijfer S (2008) Circulating endothelial cells in oncology: pitfalls and promises. Br J Cancer 98(11):1731–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Adams D, Alpaugh RK, Cristofanilli M, Martin S, Chumsri S, Charpentier M, Bergan RC, Ogden IM, Tsai S, Zhu P (2013) Identifying and subtyping circulating tumor cells from breast, prostate, and pancreatic cancer patients based on distinct morphology. Cancer Res 73(8 Supplement):1448–1448

    Article  Google Scholar 

  74. Adams DL, Adams DK, Stefansson S, Haudenschild C, Martin SS, Charpentier M, Chumsri S, Cristofanilli M, Tang CM, Alpaugh RK (2016) Mitosis in circulating tumor cells stratifies highly aggressive breast carcinomas. Breast Cancer Res BCR 18(1):44

    Article  PubMed  CAS  Google Scholar 

  75. Adams DL, Alpaugh RK, Martin SS, Charpentier M, Chumsri S, Cristofanilli M, Adams DK, Makarova OV, Zhu P, Li S et al (2016) Precision microfilters as an all in one system for multiplex analysis of circulating tumor cells. RSC Adv 6(8):6405–6414

    Article  CAS  Google Scholar 

  76. Adams DL, Alpaugh RK, Tsai S, Tang CM, Stefansson S (2016) Multi-Phenotypic subtyping of circulating tumor cells using sequential fluorescent quenching and restaining. Sci Rep 6:33488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. El-Heliebi A, Kroneis T, Zohrer E, Haybaeck J, Fischereder K, Kampel-Kettner K, Zigeuner R, Pock H, Riedl R, Stauber R et al (2013) Are morphological criteria sufficient for the identification of circulating tumor cells in renal cancer? J Transl Med 11:214

    Article  PubMed  PubMed Central  Google Scholar 

  78. Magbanua MJ, Pugia M, Lee JS, Jabon M, Wang V, Gubens M, Marfurt K, Pence J, Sidhu H, Uzgiris A et al (2015) A Novel Strategy for Detection and Enumeration of Circulating Rare Cell Populations in Metastatic Cancer Patients Using Automated Microfluidic Filtration and Multiplex Immunoassay. PLoS One 10(10):e0141166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Leversha MA, Han J, Asgari Z, Danila DC, Lin O, Gonzalez-Espinoza R, Anand A, Lilja H, Heller G, Fleisher M et al (2009) Fluorescence in situ hybridization analysis of circulating tumor cells in metastatic prostate cancer. Clin Cancer Res 15(6):2091–2097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lohr JG, Adalsteinsson VA, Cibulskis K, Choudhury AD, Rosenberg M, Cruz-Gordillo P, Francis JM, Zhang CZ, Shalek AK, Satija R et al (2014) Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat Biotechnol 32(5):479–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Polzer B, Medoro G, Pasch S, Fontana F, Zorzino L, Pestka A, Andergassen U, Meier-Stiegen F, Czyz ZT, Alberter B et al (2014) Molecular profiling of single circulating tumor cells with diagnostic intention. EMBO Mol Med 6(11):1371–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Powell AA, Talasaz AH, Zhang H, Coram MA, Reddy A, Deng G, Telli ML, Advani RH, Carlson RW, Mollick JA et al (2012) Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS One 7(5):e33788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cima I, Wen Yee C, Iliescu FS, Phyo WM, Lim KH, Iliescu C, Tan MH (2013) Label-free isolation of circulating tumor cells in microfluidic devices: Current research and perspectives. Biomicrofluidics 7(1):11810

    Article  PubMed  CAS  Google Scholar 

  84. Demers M, Krause DS, Schatzberg D, Martinod K, Voorhees JR, Fuchs TA, Scadden DT, Wagner DD (2012) Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci 109(32):13076–13081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Egan K, Crowley D, Smyth P, O'Toole S, Spillane C, Martin C, Gallagher M, Canney A, Norris L, Conlon N (2011) Platelet adhesion and degranulation induce pro-survival and pro-angiogenic signalling in ovarian cancer cells. PLoS One 6(10):e26125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hume R, West JT, Malmgren RA, Chu EA (1964) Quantitative observations of circulating megakaryocytes in the blood of patients with cancer. N Engl J Med 270(3):111–117

    Article  CAS  PubMed  Google Scholar 

  87. Kraan J, Strijbos MH, Sieuwerts AM, Foekens JA, den Bakker MA, Verhoef C, Sleijfer S, Gratama JW (2012) A new approach for rapid and reliable enumeration of circulating endothelial cells in patients. J Thromb Haemost 10(5):931–939

    Article  CAS  PubMed  Google Scholar 

  88. Adams DL, Makarova O, Zhu P, Li S, Amstutz P, Tang C (2011) Isolation of circulating tumor cells by size exclusion using lithography fabricated precision microfilters. Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research Cancer Res 71(8):2369

    Google Scholar 

  89. Vona G, Estepa L, Beroud C, Damotte D, Capron F, Nalpas B, Mineur A, Franco D, Lacour B, Pol S et al (2004) Impact of cytomorphological detection of circulating tumor cells in patients with liver cancer. Hepatology 39(3):792–797

    Article  PubMed  Google Scholar 

  90. Adams D, Makarova O, Zu P, (2011) Isolation of circulating tumor cells by size exclusion using lithography fabricated precision microfilters. Proceedings 102nd AACR Meeting 71(8 supplement 2369–2369)

    Google Scholar 

  91. Adams D, Martin S, Chumsri S, Charpentier M, Alpaugh R, Cristofanilli M, Tang C, Haudenschild C (2015) Applying a mitotic index to circulating tumor cells and its prognostic significance: A cytological approach to patient stratification. J Clin Oncol 33:11029 ASCO Annual Meeting Proceedings

    Google Scholar 

  92. Adams D, Tsai S, Makarova OV, Zhu P, Li S, Amstutz PT, Tang C-M (2013) Low cytokeratin-and low EpCAM-expressing circulating tumor cells in pancreatic cancer. J Clin Oncol 31:11046 ASCO Annual Meeting Proceedings

    Google Scholar 

  93. Adams D, Zhu P, Makarova O, Li S, Amstutz P, Tang C (2012) HER-2 FISH analysis and H & E staining of circulating tumor cells pre-isolated using high porosity precision microfilters. Cancer Res 72(8 Supplement):2395–2395

    Article  Google Scholar 

  94. Adams DL, Bergan RC, Martin SS, Chumsri S, Charpentier M, Lapidus RG, Alpaugh RK, Cristofanilli M, Tsai S, Tang C-M (2015) Correlation of cancer-associated macrophage-like cells with systemic therapy and pathological stage in numerous malignancies. J Clin Oncol 2015:11095 ASCO Annual Meeting Proceedings

    Google Scholar 

  95. Coumans FA, van Dalum G, Beck M, Terstappen LW (2013) Filter characteristics influencing circulating tumor cell enrichment from whole blood. PLoS One 8(4):e61770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hosokawa M, Hayata T, Fukuda Y, Arakaki A, Yoshino T, Tanaka T, Matsunaga T (2010) Size-selective microcavity array for rapid and efficient detection of circulating tumor cells. Anal Chem 82(15):6629–6635

    Article  CAS  PubMed  Google Scholar 

  97. LimLS, HuM, HuangMC, CheongWC, GanAT, LooiXL, LeongSM, Koay ES, Li MH: Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells. Lab Chip2012.

    Google Scholar 

  98. Lin HK, Zheng S, Williams AJ, Balic M, Groshen S, Scher HI, Fleisher M, Stadler W, Datar RH, Tai YC et al (2010) Portable filter-based microdevice for detection and characterization of circulating tumor cells. Clin Cancer Res 16(20):5011–5018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Makarova OV, Adams DL, Divan R, Rosenmann D, Zhu P, Li S, Amstutz P, Tang CM (2016) Polymer microfilters with nanostructured surfaces for the culture of circulating cancer cells. Mater Sci Eng C 66:193–198

    Article  CAS  Google Scholar 

  100. Stefansson S, Adams DL, Ershler WB, Le H, Ho DH (2016) A cell transportation solution that preserves live circulating tumor cells in patient blood samples. BMC Cancer 16(1):300

    Article  PubMed  PubMed Central  Google Scholar 

  101. Zheng S, Lin H, Liu JQ, Balic M, Datar R, Cote RJ, Tai YC (2007) Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. J Chromatogr 1162(2):154–161

    Article  CAS  Google Scholar 

  102. Zhu P, Stanton ML, Castle EP, Joseph RW, Adams DL, Li S, Amstutz P, Tang CM, Ho TH (2016) Detection of tumor-associated cells in cryopreserved peripheral blood mononuclear cell samples for retrospective analysis. J Transl Med 14(1):198

    Article  PubMed  PubMed Central  Google Scholar 

  103. Seal SH (1964) A Sieve for the Isolation of Cancer Cells and Other Large Cells from the Blood. Cancer 17:637–642

    Article  CAS  PubMed  Google Scholar 

  104. Krebs MG, Hou JM, Sloane R, Lancashire L, Priest L, Nonaka D, Ward TH, Backen A, Clack G, Hughes A et al (2012) Analysis of circulating tumor cells in patients with non-small cell lung cancer using epithelial marker-dependent and -independent approaches. J Thorac Oncol 7(2):306–315

    Article  PubMed  Google Scholar 

  105. Chang YS, di Tomaso E, McDonald DM, Jones R, Jain RK, Munn LL (2000) Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci U S A 97(26):14608–14613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Damani S, Bacconi A, Libiger O, Chourasia AH, Serry R, Gollapudi R, Goldberg R, Rapeport K, Haaser S, Topol S et al (2012) Characterization of circulating endothelial cells in acute myocardial infarction. Sci Transl Med 4(126):126ra133

    Article  Google Scholar 

  107. Tuting T, de Visser KE (2016) CANCER. How neutrophils promote metastasis. Science 352(6282):145–146

    Article  PubMed  Google Scholar 

  108. Ghosh S, Hughes D, Parma DL, Ramirez A, Li R (2014) Association of obesity and circulating adipose stromal cells among breast cancer survivors. Mol Biol Rep 41(5):2907–2916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Alix-Panabières C, Pantel K (2013) Circulating tumor cells: liquid biopsy of cancer. Clin Chem 59(1):110–118

    Article  PubMed  CAS  Google Scholar 

  110. Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A (2013) Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol 10(8):472–484

    Article  CAS  PubMed  Google Scholar 

  111. Diaz LA, Bardelli A (2014) Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol 32(6):579–586

    Article  PubMed  PubMed Central  Google Scholar 

  112. Genovese G, Kahler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, Chambert K, Mick E, Neale BM, Fromer M et al (2014) Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 371(26):2477–2487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, Lindsley RC, Mermel CH, Burtt N, Chavez A et al (2014) Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371(26):2488–2498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P, McLaren S, Wedge DC, Fullam A, Alexandrov LB, Tubio JM et al (2015) Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348(6237):880–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Xie M, Lu C, Wang J, McLellan MD, Johnson KJ, Wendl MC, McMichael JF, Schmidt HK, Yellapantula V, Miller CA et al (2014) Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 20(12):1472–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hida K, Hida Y, Amin DN, Flint AF, Panigrahy D, Morton CC, Klagsbrun M (2004) Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Res 64(22):8249–8255

    Article  CAS  PubMed  Google Scholar 

  117. Hill R, Song Y, Cardiff RD, Van Dyke T (2005) Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell 123(6):1001–1011

    Article  CAS  PubMed  Google Scholar 

  118. Houghton J, Li H, Fan X, Liu Y, Liu JH, Rao VP, Poutahidis T, Taylor CL, Jackson EA, Hewes C et al (2010) Mutations in bone marrow-derived stromal stem cells unmask latent malignancy. Stem Cells Dev 19(8):1153–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Iguchi Y, Ito YM, Kataoka F, Nomura H, Tanaka H, Chiyoda T, Hashimoto S, Nishimura S, Takano M, Yamagami W et al (2014) Simultaneous analysis of the gene expression profiles of cancer and stromal cells in endometrial cancer. Genes Chromosomes Cancer 53(9):725–737

    Article  CAS  PubMed  Google Scholar 

  120. Kinseth MA, Jia Z, Rahmatpanah F, Sawyers A, Sutton M, Wang-Rodriguez J, Mercola D, McGuire KL (2014) Expression differences between African American and Caucasian prostate cancer tissue reveals that stroma is the site of aggressive changes. Int J Cancer 134(1):81–91

    Article  PubMed  CAS  Google Scholar 

  121. Patocs A, Zhang L, Xu Y, Weber F, Caldes T, Mutter GL, Platzer P, Eng C (2007) Breast-cancer stromal cells with TP53 mutations and nodal metastases. N Engl J Med 357(25):2543–2551

    Article  CAS  PubMed  Google Scholar 

  122. Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, Maira G, Parati EA, Stassi G, Larocca LM et al (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468(7325):824–828

    Article  CAS  PubMed  Google Scholar 

  123. Pailler E, Auger N, Lindsay CR, Vielh P, Islas-Morris-Hernandez A, Borget I, Ngo-Camus M, Planchard D, Soria JC, Besse B et al (2015) High level of chromosomal instability in circulating tumor cells of ROS1-rearranged non-small-cell lung cancer. Ann Oncol 26(7):1408–1415

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank all of the patients and all of the healthy volunteers who contributed to this study. We also thank Drs. S. Stefansson, D.K. Adams, and C.M. Tang for the help in editing this chapter. This work was supported by the US Army Research Office (ARO) and the Defense Advanced Research Projects Agency (DARPA) (W911NF-14-C0098). The content of the information does not necessarily reflect the position or the policy of the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L. Adams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Adams, D.L., Cristofanilli, M. (2017). Detecting and Monitoring Circulating Stromal Cells from Solid Tumors Using Blood-Based Biopsies in the Twenty-First Century: Have Circulating Stromal Cells Come of Age?. In: Cristofanilli, M. (eds) Liquid Biopsies in Solid Tumors. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-50956-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50956-3_5

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-50955-6

  • Online ISBN: 978-3-319-50956-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics