Skip to main content

Evolutionary Multi-objective Ensembles for Wind Power Prediction

  • Conference paper
  • First Online:
  • 1112 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10097))

Abstract

Ensembles turn out to be excellent wind power prediction methods. But the space of algorithms and parameters of supervised learning ensembles is large. For an efficient optimization and tuning of ensembles, we propose to employ evolutionary multi-objective optimization methods in this work. NSGA-II is a classic optimization algorithm based on non-dominated sorting and maximization of the crowding distance and has successfully been applied in various applications in the past. The experimental part of the paper shows how NSGA-II tunes SVR ensembles, random forests, and heterogenous ensembles. The study demonstrates that the proposed approach evolves an attractive set of ensembles for a practitioner yielding numerous compromises of prediction accuracy and runtime.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  2. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). IEEE Press

    Article  Google Scholar 

  3. Eiben, A., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Heidelberg (2015)

    Book  MATH  Google Scholar 

  4. Heinermann, J., Kramer, O.: Precise wind power prediction with SVM ensemble regression. In: Wermter, S., Weber, C., Duch, W., Honkela, T., Koprinkova-Hristova, P., Magg, S., Palm, G., Villa, A.E.P. (eds.) ICANN 2014. LNCS, vol. 8681, pp. 797–804. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11179-7_100

    Google Scholar 

  5. Heinermann, J., Kramer, O.: Machine learning ensembles for wind power prediction. Renew. Energy 89, 671–679 (2016). Elsevier

    Article  Google Scholar 

  6. Hu, Q.-H., Yu, D.-R., Wang, M.-Y.: Constructing rough decision forests. In: Ślęzak, D., Yao, J.T., Peters, J.F., Ziarko, W., Hu, X. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3642, pp. 147–156. Springer, Heidelberg (2005). doi:10.1007/11548706_16

    Chapter  Google Scholar 

  7. Kramer, O., Gieseke, F., Satzger, B.: Wind energy prediction and monitoring with neural computation. Neurocomputing 109, 84–93 (2013)

    Article  Google Scholar 

  8. Lew, D., Milligan, M., Jordan, G., Freeman, L., Miller, N., Clark, K., Piwko, R.: How do wind and solar power affect grid operations: the western wind and solar integration study. In: 8th International Workshop on Large Scale Integration of Wind Power and on Transmission Networks for Offshore Wind Farms, pp. 14–15 (2009)

    Google Scholar 

  9. Mierswa, I.: Controlling overfitting with multi-objective support vector machines. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 1830–1837 (2007)

    Google Scholar 

  10. Oehmcke, S., Heinermann, J., Kramer, O.: Analysis of diversity methods for evolutionary multi-objective ensemble classifiers. In: Mora, A.M., Squillero, G. (eds.) EvoApplications 2015. LNCS, vol. 9028, pp. 567–578. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16549-3_46

    Google Scholar 

  11. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Stubbemann, J., Treiber, N.A., Kramer, O.: Resilient propagation for multivariate wind power prediction. In: International Conference on Pattern Recognition Applications and Methods (ICPRAM), pp. 333–337 (2015)

    Google Scholar 

  13. Treiber, N.A., Kramer, O.: Evolutionary feature weighting for wind power prediction with nearest neighbor regression. In: IEEE Congress on Evolutionary Computation (CEC), pp. 332–337. IEEE Press (2015)

    Google Scholar 

Download references

Acknowledgement

We thank the ministry of science and culture of Lower Saxony for supporting us with the PhD Program System Integration of Renewable Energies. Furthermore, we thank the US National Renewable Energy Laboratory for providing the wind dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Heinermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Heinermann, J., Lässig, J., Kramer, O. (2017). Evolutionary Multi-objective Ensembles for Wind Power Prediction. In: Woon, W., Aung, Z., Kramer, O., Madnick, S. (eds) Data Analytics for Renewable Energy Integration. DARE 2016. Lecture Notes in Computer Science(), vol 10097. Springer, Cham. https://doi.org/10.1007/978-3-319-50947-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50947-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50946-4

  • Online ISBN: 978-3-319-50947-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics