Skip to main content

Selection of Numerical Weather Forecast Features for PV Power Predictions with Random Forests

  • Conference paper
  • First Online:
Data Analytics for Renewable Energy Integration (DARE 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10097))

Abstract

The increasing volatility introduced to power grids by renewable energy sources makes it necessary that the accuracy of energy forecasts are improved. Photovoltaic (PV) power plants hold the biggest share of installed capacity of renewable energy in Germany, so that high quality PV power forecasts are vital for a cost efficient operation of the underlying electrical grid. In this paper, we evaluate multiple Numerical Weather Prediction (NWP) parameters for their ability to improve PV power forecasting features. The importance of features is decided by a Random Forest algorithm. Furthermore, the resulting top ranked features are tested by performing PV power forecasts with Support Vector Regression, Random Forest, and linear regression models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    meteocontrol GmbH: www.meteocontrol.com.

  2. 2.

    European Centre for Medium-Range Weather Forecasts: www.ecmwf.int.

References

  1. Bailey, T., Jain, A.K.: A note on distance-weighted k-nearest neighbor rules. IEEE Trans. Syst. Man Cybern. 8, 311–313 (1978)

    Article  MATH  Google Scholar 

  2. Brabec, M., Pelikán, E., Krc, P., Eben, K., Musilek, P.: Statistical modeling of energy production by photovoltaic farms. In: 2010 IEEE Electric Power and Energy Conference (EPEC), pp. 1–6, August 2010

    Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  4. Chang, C.-C., Lin, C.-J.: LIBSVM – a library for support vector machines (2015). Website, last checked 11 Feb 2016

    Google Scholar 

  5. Chen, C., Duan, S., Cai, T., Liu, B.: Online 24-h solar power forecasting based on weather type classification using artificial neural network. Sol. Energy 85(11), 2856–2870 (2011)

    Article  Google Scholar 

  6. Fontoynont, M., Dumortier, D., Heinnemann, D., Hammer, A., Olseth, J., Skarveit, A., Ineichen, P., Reise, C., Page, J., Roche, L., et al.: Satellight: a WWW server which provides high quality daylight and solar radiation data for Western and Central Europe. In: 9th Conference on Satellite Meteorology and Oceanography, pp. 434–437. American Meteorological Society, Boston (1998)

    Google Scholar 

  7. Gala, Y., Fernández, Á., Díaz, J., Dorronsoro, J.R.: Support vector forecasting of solar radiation values. In: Pan, J.-S., Polycarpou, M.M., Woźniak, M., Carvalho, A.C.P.L.F., Quintián, H., Corchado, E. (eds.) HAIS 2013. LNCS (LNAI), vol. 8073, pp. 51–60. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40846-5_6

    Chapter  Google Scholar 

  8. Genuer, R., Poggi, J.-M., Tuleau-Malot, C.: Variable selection using random forests. Pattern Recogn. Lett. 31(14), 2225–2236 (2010)

    Article  Google Scholar 

  9. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  10. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  11. Jurado, S., Peralta, J., Nebot, A., Mugica, F., Cortez, P.: Short-term electric load forecasting using computational intelligence methods. In: 2013 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 1–8, July 2013

    Google Scholar 

  12. Kramer, O., Gieseke, F.: Short-term wind energy forecasting using support vector regression. In: Corchado, E., Snásel, V., Sedano, J., Hassanien, A.E., Calvo, J.L., Ślȩzak, D. (eds.) SOCO 2011. Advances in Intelligent and Soft Computing, vol. 87, pp. 271–280. Springer, Heidelberg (2011)

    Google Scholar 

  13. Krömer, P., Musílek, P., Pelikán, E., Krc, P., Jurus, P., Eben, K.: Support vector regression of multiple predictive models of downward short-wave radiation. In: 2014 International Joint Conference on Neural Networks, IJCNN 2014, Beijing, China, 6–11 July 2014, pp. 651–657 (2014)

    Google Scholar 

  14. Lorenz, E., Hurka, J., Heinemann, D., Beyer, H.G.: Irradiance forecasting for the power prediction of grid-connected photovoltaic systems. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 2(1), 2–10 (2009)

    Article  Google Scholar 

  15. Louppe, G., Wehenkel, L., Sutera, A., Geurts, P.: Understanding variable importances in forests of randomized trees. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 26, pp. 431–439. Curran Associates Inc., Red Hook (2013)

    Google Scholar 

  16. Mandal, P., Madhira, S.T.S., Haque, A.U., Meng, J., Pineda, R.L.: Forecasting power output of solar photovoltaic system using wavelet transform and artificial intelligence techniques. Procedia Comput. Sci. 12, 332–337 (2012)

    Article  Google Scholar 

  17. Marquez, R., Coimbra, C.F.: Forecasting of global and direct solar irradiance using stochastic learning methods, ground experiments and the NWS database. Sol. Energy 85(5), 746–756 (2011)

    Article  Google Scholar 

  18. Mellit, A.: Artificial intelligence technique for modelling and forecasting of solar radiation data: a review. Int. J. Artif. Intell. Soft Comput. 1, 52 (2008)

    Article  Google Scholar 

  19. Monteiro, C., Santos, T., Fernandez-Jimenez, L., Ramirez-Rosado, I., Terreros-Olarte, M.: Short-term power forecasting model for photovoltaic plants based on historical similarity. Energies 6(5), 2624–2643 (2013)

    Article  Google Scholar 

  20. Oshiro, T.M., Perez, P.S., Baranauskas, J.A.: How many trees in a random forest? In: Perner, P. (ed.) MLDM 2012. LNCS (LNAI), vol. 7376, pp. 154–168. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31537-4_13

    Chapter  Google Scholar 

  21. Pedro, H.T., Coimbra, C.F.: Assessment of forecasting techniques for solar power production with no exogenous inputs. Sol. Energy 86(7), 2017–2028 (2012)

    Article  Google Scholar 

  22. Pelland, S., Remund, J., Kleissl, J., Oozeki, T., De Brabandere, K.: Photovoltaic and solar forecasting: state of the art (2013). http://www.iea-pvps.org/index.php?id=1&eID=dam_frontend_push&docID=1690

  23. scikit learn. Machine learning in Python (2016). Website, last checked 11 Feb 2016

    Google Scholar 

  24. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14, 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  25. Wirth, H., Schneider, K.: Recent facts about photovoltaics in Germany, April 2016. http://www.ise.fraunhofer.de/en/renewable-energy-data/data-and-facts-about-pv

  26. Wolff, B., Kühnert, J., Lorenz, E., Kramer, O., Heinemann, D.: Comparing support vector regression for PV power forecasting to a physical modeling approach using measurement, numerical weather prediction, and cloud motion data. Sol. Energy 135, 197–208 (2016)

    Article  Google Scholar 

  27. Zeng, J., Qiao, W.: Short-term solar power prediction using a support vector machine. Renew. Energy 52, 118–127 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We like to thank meteocontrol GmbH for providing the PV system measurements as well as the ECMWF for numerical weather prediction forecasts that are basis of our experimental analysis. Björn Wolff is funded by the PhD program “System Integration of Renewable Energies” (SEE) of the University of Oldenburg promoted by the Lower Saxony Ministry for Science and Culture (MWK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Wolff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wolff, B., Kramer, O., Heinemann, D. (2017). Selection of Numerical Weather Forecast Features for PV Power Predictions with Random Forests. In: Woon, W., Aung, Z., Kramer, O., Madnick, S. (eds) Data Analytics for Renewable Energy Integration. DARE 2016. Lecture Notes in Computer Science(), vol 10097. Springer, Cham. https://doi.org/10.1007/978-3-319-50947-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50947-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50946-4

  • Online ISBN: 978-3-319-50947-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics