Skip to main content

The Method of Artificial Organs Fabrication Based on Reverse Engineering in Medicine

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

The paper presents the concept and implementation of innovative methods of producing artificial organs and prosthesis based on 3D printing technology. These organs possess physical and mechanical properties similar to human organs and bodies part. As a result, using such organs, it is possible to conduct training and workshops, especially in the field of urological surgery, under the conditions close to real operations. Due to the fabrication of 3D models can also lead so-called pre-operations in order to better prepare surgeons to carry out complex operations and post-operation e.g. observers proper operation. The proposed method enables the production of artificial human organs whose consistency, plastic properties, hardness, elasticity are close to the real organ of specific patient, because it can be made on the basis of the data from MRI and CT. The process of preparing 3D geometry is prepared in applications in the field of CAD, but also through advanced applications designed for editing in vector geometry environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hoy MB (2003) 3D printing: making things at the library. Med Ref Serv Q. 2013; 32(1):94–9.

    Google Scholar 

  2. Boland T, Mironov V, Gutowska A, Roth EA, Markwald RR. (2003) Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. Anat Rec A Discov Mol Cell Evol Biol.;272(2):497–502.

    Google Scholar 

  3. Markwald R. (2003) Desktop organ printing. Anat Rec B New Anat.;273(1):120–1.

    Google Scholar 

  4. Wilson WC Jr, Boland T. (2003) Cell and organ printing 1: protein and cell printers. Anat Rec A Discov Mol Cell Evol Biol.;272(2):491–6.

    Google Scholar 

  5. Ringeisen BR, Othon CM, Barron JA, Young D, Spargo BJ. (2006) Jet-based methods to print living cells. Biotechnol J.;1(9):930–48.

    Google Scholar 

  6. Lee V, Singh G, Trasatti JP, Bjornsson C, Xu X, Tran TN, Yoo SS, Dai G, Karande P. (2014) Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods.;20(6):473–84.

    Google Scholar 

  7. Boland T, Xu T, Damon B, Cui X. (2006) Application of inkjet printing to tissue engineering. Biotechnol J.;1(9):910–7.

    Google Scholar 

  8. Kundu J, Shim JH, Jang J, Kim SW, Cho DW. (2015) An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med.;9(11):1286–97.

    Google Scholar 

  9. Koch L, Deiwick A, Schlie S, Michael S, Gruene M, Coger V, Zychlinski D, Schambach A, Reimers K, Vogt PM, Chichkov B. (2012) Skin tissue generation by laser cell printing. Biotechnol Bioeng.;109(7):1855–63.

    Google Scholar 

  10. Zhang Y, Yu Y, Akkouch A, Dababneh A, Dolati F, Ozbolat IT. (2015) In Vitro Study of Directly Bioprinted Perfusable Vasculature Conduits. Biomater Sci.;3(1):134–43.

    Google Scholar 

  11. Zhang Y, Yu Y, Chen H, Ozbolat IT. (2013) Characterization of printable cellular micro-fluidic channels for tissue engineering. Biofabrication.;5(2):025004.

    Google Scholar 

  12. Christensen K, Xu C, Chai W, Zhang Z, Fu J, Huang Y. (2015) Freeform inkjet printing of cellular structures with bifurcations. Biotechnol Bioeng.;112(5):1047–55.

    Google Scholar 

  13. Lee CH, Rodeo SA, Fortier LA, Lu C, Erisken C, Mao JJ. (2014) Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep. Sci Transl Med.;6(266):266ra171.

    Google Scholar 

  14. Mannoor MS, Jiang Z, James T, Kong YL, Malatesta KA, Soboyejo WO, Verma N, Gracias DH, McAlpine MC. (2013) 3D printed bionic ears. Nano Lett.;13(6):2634–9.

    Google Scholar 

  15. Rochow N, Manan A, Wu WI, Fusch G, Monkman S, Leung J, Chan E, Nagpal D, Predescu D, Brash J, (2014) An integrated array of microfluidic oxygenators as a neonatal lung assist device: in vitro characterization and in vivo demonstration. Artif Organs.;38(10):856–66.

    Google Scholar 

  16. Faulkner-Jones A, Fyfe C, Cornelissen DJ, Gardner J, King J, Courtney A, Shu W. (2015) Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication.;7(4):044102.

    Google Scholar 

  17. Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hägg D, Gatenholm P. (2015) 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications. Biomacromolecules.;16(5):1489–96.

    Google Scholar 

  18. Ballyns JJ, Gleghorn JP, Niebrzydowski V, Rawlinson JJ, Potter HG, Maher SA, Wright TM, Bonassar LJ. (2008) Image-guided tissue engineering of anatomically shaped implants via MRI and micro-CT using injection molding. Tissue Eng Part A.;14(7):1195–202.

    Google Scholar 

  19. Bezgin G, Reid AT, Schubert D, Kötter R. (2009) Matching spatial with ontological brain regions using Java tools for visualization, database access, and integrated data analysis. Neuroinformatics.;7(1):7–22.

    Google Scholar 

  20. Radenkovic D, Solouk A, Seifalian A. (2016) Personalized development of human organs using 3D printing technology. Med Hypotheses.;87:30–3.

    Google Scholar 

  21. Niebuhr NI, Johnen W, Güldaglar T, Runz A, Echner G, Mann P, Möhler C, Pfaffenberger A, Jäkel O, Greilich S. (2016) Technical Note: Radiological properties of tissue surrogates used in a multimodality deformable pelvic phantom for MR-guided radiotherapy. Med Phys.;43(2):908.

    Google Scholar 

  22. Visser J, Melchels FP, Dhert WJ, Malda J. (2013) Tissue printing; the potential application of 3D printing in medicine. Ned Tijdschr Geneeskd.;157(52):A7043.

    Google Scholar 

  23. Chang JW, Park SA, Park JK, Choi JW, Kim YS, Shin YS, Kim CH. (2014) Tissue-engineered tracheal reconstruction using three-dimensionally printed artificial tracheal graft: preliminary report. Artif Organs.;38(6):E95–E105.

    Google Scholar 

  24. Hsieh FY, Hsu SH. (2015) 3D bioprinting: a new insight into the therapeutic strategy of neural tissue regeneration. Organogenesis.

    Google Scholar 

  25. Kurzrock R, Stewart DJ. Click chemistry, (2015) 3D-printing, and omics: the future of drug development. Oncotarget.; doi:10.18632/oncotarget.6787.

    Google Scholar 

  26. Gao G, Cui X. (2015) Three-dimensional bioprinting in tissue engineering and regenerative medicine. Biotechnol Lett.

    Google Scholar 

  27. Wang X, Rijff BL, Khang G. (2015) A building-block approach to 3D printing a multichannel, organ-regenerative scaffold. J Tissue Eng Regen Med.; doi:10.1002/term.2038.

  28. Gao Q, He Y, Fu JZ, Liu A, Ma L. (2015) Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials.;61:203–15.

    Google Scholar 

  29. Sun Y, Yang X, Wang Q. (2014) In-silico analysis on biofabricating vascular networks using kinetic Monte Carlo simulations. Biofabrication.;6(1):015008.

    Google Scholar 

  30. Cheung CL, Looi T, Lendvay TS, Drake JM, Farhat WA. (2014) Use of 3-dimensional printing technology and silicone modeling in surgical simulation: development and face validation in pediatric laparoscopic pyeloplasty. J Surg Educ.;71(5):762–7.

    Google Scholar 

  31. Ko HC, Milthorpe BK, McFarland CD. (2007) Engineering thick tissues—the vascularisation problem. Eur Cell Mater.;14:1–18; discussion 18–9.

    Google Scholar 

  32. Stanton MM, Trichet-Paredes C, Sánchez S. (2015) Applications of three-dimensional (3D) printing for microswimmers and bio-hybrid robotics. Lab Chip.;15(7):1634–7.

    Google Scholar 

  33. Steffens D, Alvarenga Rezende R, Santi B, Alencar de Sena Pereira FD, Inforçatti Neto P, Lopes da Silva JV, Pranke P. (2015) 3D-printed PCL scaffolds for the cultivation of mesenchymal stem cells. J Appl Biomater Funct Mater.; doi:10.5301/jabfm.5000252.

  34. Jakus AE, Rutz AL, Shah RN. (2016) Advancing the field of 3D biomaterial printing. Biomed Mater.;11(1):014102.

    Google Scholar 

  35. Jones DB, Sung R, Weinberg C, Korelitz T, Andrews R. (2015) Three-Dimensional Modeling May Improve Surgical Education and Clinical Practice. Surg Innov.; 29. pii: 1553350615607641.

    Google Scholar 

  36. Bauermeister AJ, Zuriarrain A, Newman MI. (2015) Three-Dimensional Printing in Plastic and Reconstructive Surgery: A Systematic Review. Ann Plast Surg.

    Google Scholar 

  37. Lee W, Pinckney J, Lee V, Lee JH, Fischer K, Polio S, Park JK, Yoo SS. (2009) Three-dimensional bioprinting of rat embryonic neural cells. Neuroreport.;20(8):798–803.

    Google Scholar 

  38. Yoo SS. (2015) 3D-printed biological organs: medical potential and patenting opportunity. Expert Opin Ther Pat.;25(5):507–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Macko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Macko, M., Szczepański, Z., Mikołajewski, D., Mikołajewska, E., Listopadzki, S. (2017). The Method of Artificial Organs Fabrication Based on Reverse Engineering in Medicine. In: Rusiński, E., Pietrusiak, D. (eds) Proceedings of the 13th International Scientific Conference . RESRB 2016. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-50938-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50938-9_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50937-2

  • Online ISBN: 978-3-319-50938-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics