Skip to main content

Nature-inspired Algorithm-based Optimization for Beamforming of Linear Antenna Array System

  • Chapter
  • First Online:
Nature-Inspired Computing and Optimization

Part of the book series: Modeling and Optimization in Science and Technologies ((MOST,volume 10))

Abstract

Nature-inspired algorithms have brought great revolution in all fields of electromagnetics where the optimization of certain parameters is highly complex and nonlinear. With the help of proper design of the cost function or the fitness function in terms of optimizing parameters, any type of problem can be solved. The nature-inspired algorithms play an important role in the optimal design of antenna array with better radiation characteristics. In this work, hyper-beamforming of linear antenna array has been taken as an example of nature- inspired optimization in antenna array system. An emerging nature-inspired optimization technique has been applied to design the optimal array to reduce the side lobes and to improve the other radiation characteristics to show the effect of the optimization on design via the nature-inspired algorithms. Various nature-inspired algorithms have been considered for the optimization. Flower pollination algorithm (FPA) is applied to determine the optimal amplitude coefficients and the spacing between the elements of the array of the optimized hyper-beamforming of linear antenna array. FPA keeps the best solution until it reaches the end of the iteration. The results obtained by the FPA algorithm have been compared with those of other stochastic algorithms, such as real-coded genetic algorithm (RGA), particle swarm optimization (PSO), differential evolution (DE), firefly algorithm (FFA), simulated annealing (SA), artificial immune system (AIS), and artificial bee colony (ABC). Optimal hyper-beamforming of the same obtained by FPA can obtain the best improvement in side lobe level (SLL) with fixed first null beam width (FNBW). Directivity of the array is calculated by using Simpsons 1/3 rule. The entire simulation has been done for 10-, 14-, and 20-element linear antenna arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schlieter H, Eigenbrod H (2000) Method for the formation of radiated beams in direction finder systems. February 1 2000. US Patent 6,021,096

    Google Scholar 

  2. Isernia T, Ares Pena FJ, Bucci OM, D’urso M, Fondevila Gomez J, Rodriguez JA (2004) A hybrid approach for the optimal synthesis of pencil beams through array antennas. IEEE Trans Antennas Propag 52(11):2912–2918

    Google Scholar 

  3. Walker R (1985) Bearing accuracy and resolution bounds of high-resolution beamformers. In: IEEE international conference on acoustics, speech, and signal processing, ICASSP’85, vol 10. IEEE, pp 1784–1787

    Google Scholar 

  4. Takao K, Fujita M, Nishi T (1976) An adaptive antenna array under directional constraint. IEEE Trans Antennas Propag 24(5):662–669

    Article  Google Scholar 

  5. Schlieter H (2001) Method for three-dimensional beam forming in direction finding systems, January 23 2001. US Patent 6,178,140

    Google Scholar 

  6. Balanis CA (2005) Antenna theory analysis and design. Wiley, India

    Google Scholar 

  7. Kraus JD (1997) Antenna. TMH Publishing Co., Ltd., New Delhi

    Google Scholar 

  8. Anitha V, Lakshmi SSJ, Sreedevi I, Khan H, Ramakrishna KSKP (2012) An adaptive processing of linear array for target detection improvement. Int J Comput Appl (0975–8887) 42(4):33–36

    Google Scholar 

  9. Mailloux R (1986) Phased array architecture for millimeter wave active arrays. IEEE Antennas Propag Soc Newsl 28(1):4–7

    Article  Google Scholar 

  10. Schrank H (1983) Low sidelobe phased array antennas. IEEE Antennas Propag Soc Newsl 25(2):4–9

    Article  Google Scholar 

  11. Applebaum S, Chapman D (1976) Adaptive arrays with main beam constraints. IEEE Trans Antennas Propag 24(5):650–662

    Article  Google Scholar 

  12. Chen S (2000) Iir model identification using batch-recursive adaptive simulated annealing algorithm

    Google Scholar 

  13. Černỳ V (1985) Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J Optim Theory Appl 45(1):41–51

    Article  MathSciNet  MATH  Google Scholar 

  14. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  MathSciNet  MATH  Google Scholar 

  15. Randy L (1997) Haupt. Phase-only adaptive nulling with a genetic algorithm. IEEE Trans Antennas Propag 45(6):1009–1015

    Article  Google Scholar 

  16. Haupt RL, Werner DH (2007) Genetic algorithms in electromagnetics. Wiley

    Google Scholar 

  17. Chung YC, Haupt RL (1999) Adaptive nulling with spherical arrays using a genetic algorithm. In: Antennas and propagation society international symposium, 1999. IEEE, vol 3. IEEE, pp 2000–2003

    Google Scholar 

  18. Ram G, Mandal D, Kar R, Ghoshal SP (2014) Optimized hyper beamforming of receiving linear antenna arrays using firefly algorithm. Int J Microwave Wirel Technol 6(2):181

    Article  Google Scholar 

  19. Hardel GR, Yallaparagada NT, Mandal D, Bhattacharjee AK (2011) Introducing deeper nulls for time modulated linear symmetric antenna array using real coded genetic algorithm. In: 2011 IEEE symposium on computers informatics (ISCI), pp 249–254, March 2011

    Google Scholar 

  20. Eberhart RC, Shi Y (1998) Comparison between genetic algorithms and particle swarm optimization. In: International conference on evolutionary programming. Springer, pp 611–616

    Google Scholar 

  21. Yang X-S (2008) Nature-inspired metaheuristic algorithms. Luniver Press

    Google Scholar 

  22. Yang X-S (2009) Firefly algorithms for multimodal optimization. In: International Symposium on Stochastic Algorithms. Springer, pp 169–178

    Google Scholar 

  23. Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-Inspired Comput 2(2):78–84

    Article  Google Scholar 

  24. Yang X-S, Hosseini SSS, Gandomi AH (2012) Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect. Appl Soft Comput 12(3):1180–1186

    Article  Google Scholar 

  25. Fister I, Yang X-S, Brest J (2013) A comprehensive review of firefly algorithms. Swarm Evol Comput 13:34–46

    Article  Google Scholar 

  26. Gandomi AH, Yang X-S, Talatahari S, Alavi AH (2013) Firefly algorithm with chaos. Commun Nonlinear Sci Numer Simul 18(1):89–98

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang Xin-She (2013) Multiobjective firefly algorithm for continuous optimization. Eng Comput 29(2):175–184

    Article  Google Scholar 

  28. Yang X-S (2010) Firefly algorithm. Engineering optimization, pp 221–230

    Google Scholar 

  29. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE international conference on neural networks, 1995. Proceedings., vol 4. IEEE, pp 1942–1948

    Google Scholar 

  30. Mandal D, Yallaparagada NT, Ghoshal SP, Bhattacharjee AK (2010) Wide null control of linear antenna arrays using particle swarm optimization. In: 2010 Annual IEEE India conference (INDICON). IEEE, pp 1–4

    Google Scholar 

  31. Shi Y et al (2001) Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 congress on evolutionary computation, 2001, vol 1. IEEE, pp 81–86

    Google Scholar 

  32. Durmuş B, Gün A (2011) Parameter identification using particle swarm optimization. In: International advanced technologies symposium (IATS 11), Elazığ, Turkey, pp 16–18

    Google Scholar 

  33. Hao Z-F, Guo G-H, Huang H (2007) A particle swarm optimization algorithm with differential evolution. In: 2007 international conference on machine learning and cybernetics, vol 2. IEEE, pp 1031–1035

    Google Scholar 

  34. Storn R, Price K (1995) Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces, vol 3. ICSI Berkeley

    Google Scholar 

  35. Storn R, Price KV (1996) Minimizing the real functions of the icec’96 contest by differential evolution. In: International conference on evolutionary computation, pp 842–844

    Google Scholar 

  36. Price KV, Storn RM, Lampinen JA (2005) Differential evolution a practical approach to global optimization

    Google Scholar 

  37. Lin C, Qing A, Feng Q (2009) Synthesis of unequally spaced antenna arrays by a new differential evolutionary algorithm. Int J Commun Netw Inf Secur 1(1):20–26

    Google Scholar 

  38. Lin C, Qing A, Feng Q (2010) Synthesis of unequally spaced antenna arrays by using differential evolution. IEEE Trans Antennas Propag 58(8):2553–2561

    Article  Google Scholar 

  39. Rocca P, Oliveri G, Massa A (2011) Differential evolution as applied to electromagnetics. IEEE Antennas Propag Mag 53(1):38–49

    Article  Google Scholar 

  40. Yap DFW, Koh SP, Tiong SK, Sim EYS, Yaw MW (2011) Artificial immune algorithm based gravimetric fluid dispensing machine. In: 2011 11th international conference on hybrid intelligent systems (HIS). IEEE, pp 406–410

    Google Scholar 

  41. Castro LN, Timmis JI (2003) Artificial immune systems as a novel soft computing paradigm. Soft Comput 7(8):526–544

    Article  Google Scholar 

  42. Graaff AJ, Engelbrecht AP (2007) A local network neighbourhood artificial immune system for data clustering. In:2007 IEEE congress on evolutionary computation. IEEE, pp 260–267

    Google Scholar 

  43. Timmis J, Neal M (2001) A resource limited artificial immune system for data analysis. Knowl Based Syst 14(3):121–130

    Article  Google Scholar 

  44. Dasgupta D, Ji Z, González FA et al (2003) Artificial immune system (ais) research in the last five years. IEEE Congr Evol Comput 1:123–130

    Google Scholar 

  45. Karaboga D, Basturk B (2008) On the performance of artificial bee colony (abc) algorithm. Appl Soft Comput 8(1):687–697

    Article  Google Scholar 

  46. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J Global Optim 39(3):459–471

    Article  MathSciNet  MATH  Google Scholar 

  47. Rajo-Iglesias E, Quevedo-Teruel O (2007) Linear array synthesis using an ant-colony-optimization-based algorithm. IEEE Antennas Propag Mag 49(2):70–79

    Google Scholar 

  48. Mandelbrot BB (1982) The fractal geometry of nature

    Google Scholar 

  49. Kleinberg MJ (2000) Navigation in a small world. Nature 406(6798):845–845

    Article  Google Scholar 

  50. Li G, Reis SD, Moreira AA, Havlin S, Stanley HE, Andrade JS Jr (2010) Towards design principles for optimal transport networks. Phys Rev Lett 104(1):018701–018701

    Article  Google Scholar 

  51. Mantegna RN (1994) Fast, accurate algorithm for numerical simulation of levy stable stochastic processes. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top 49(5):4677–4683

    Google Scholar 

  52. Yang X-S (2010) Firefly algorithm, levy flights and global optimization. In: Research and development in intelligent systems XXVI. Springer, pp 209–218

    Google Scholar 

  53. Yang X-S, Deb S (2009) Cuckoo search via lévy flights. In: World congress on nature & biologically inspired computing, 2009. NaBIC 2009. IEEE, pp 210–214

    Google Scholar 

  54. Pavlyukevich Ilya (2007) Lévy flights, non-local search and simulated annealing. J Comput Phys 226(2):1830–1844

    Article  MathSciNet  MATH  Google Scholar 

  55. Yang X-S (2012) Flower pollination algorithm for global optimization. In: International conference on unconventional computing and natural computation. Springer, pp 240–249

    Google Scholar 

  56. Yang X-S, Karamanoglu M, He X (2014) Flower pollination algorithm: a novel approach for multiobjective optimization. Eng Optim 46(9):1222–1237

    Article  MathSciNet  Google Scholar 

  57. Yang X-S (2014) Swarm intelligence based algorithms: a critical analysis. Evol Intell 7(1):17–28

    Article  Google Scholar 

  58. Yang X-S, Karamanoglu M, He X (2013) Multi-objective flower algorithm for optimization. Proc Comput Sci 18:861–868

    Article  Google Scholar 

  59. Yang X-S (2014) Nature-inspired optimization algorithms. Elsevier

    Google Scholar 

  60. Yang X-S http://www.mathworks.com/matlabcentral/fileexchange/45112-flower-pollination -algorithm

  61. Waser NM (1986) Flower constancy: definition, cause, and measurement. Am Nat 593–603

    Google Scholar 

  62. Alam DF, Yousri DA, Eteiba MB (2015) Flower pollination algorithm based solar pv parameter estimation. Energy Convers Manag 101:410–422

    Article  Google Scholar 

  63. Łukasik S, Kowalski PA (2015) Study of flower pollination algorithm for continuous optimization. In: Intelligent systems’ 2014. Springer, pp 451–459

    Google Scholar 

  64. Dubey HM, Pandit M, Panigrahi BK (2015) Hybrid flower pollination algorithm with time-varying fuzzy selection mechanism for wind integrated multi-objective dynamic economic dispatch. Renew Energy 83:188–202

    Article  Google Scholar 

  65. Wang R, Zhou Y (2014) Flower pollination algorithm with dimension by dimension improvement. Math Prob Eng

    Google Scholar 

  66. Walpole RE, Myers RH, Myers SL, Ye K (1993) Probability and statistics for engineers and scientists, vol 5. Macmillan New York

    Google Scholar 

  67. Koç SNK, Köksal Ad (2011) Wire antennas optimized using genetic algorithm. Comput Electr Eng 37(6):875–885

    Article  Google Scholar 

  68. Kułakowski P, Vales-Alonso J, Egea-López E, Ludwin W, García-Haro J (2010) Angle-of-arrival localization based on antenna arrays for wireless sensor networks. Comput Electr Eng 36(6):1181–1186

    Article  MATH  Google Scholar 

  69. Zhang X, Feng G, Gao X, Dazhuan X (2010) Blind multiuser detection for mc-cdma with antenna array. Comput Electr Eng 36(1):160–168

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopi Ram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ram, G., Mandal, D., Ghoshal, S.P., Kar, R. (2017). Nature-inspired Algorithm-based Optimization for Beamforming of Linear Antenna Array System. In: Patnaik, S., Yang, XS., Nakamatsu, K. (eds) Nature-Inspired Computing and Optimization. Modeling and Optimization in Science and Technologies, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-50920-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50920-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50919-8

  • Online ISBN: 978-3-319-50920-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics