Skip to main content

Brain Action Inspired Morphological Image Enhancement

  • Chapter
  • First Online:

Part of the book series: Modeling and Optimization in Science and Technologies ((MOST,volume 10))

Abstract

The image perception by human brain through the eyes is not exactly what the eyes receive. In order to have an enhanced view of the received image and more clarity in detail, the brain naturally modifies the color tones in adjacent neighborhoods of colors. A very famous example of this human sight natural modification to the view is the famous Chevreul–Mach bands. In this phenomenon, every bar is filled with one solid level of gray, but human brain perceives narrow bands at the edges with increased contrast which does not reflect the physical reality of solid gray bars. This human visual system action in illusion, highlighting the edges, is inspired here in visual illusory image enhancement (VIIE). An algorithm for the newly introduced VIIE by deploying morphological filters is presented as morphological VIIE (MVIIE). It deploys morphological filters for boosting the same effect on the image edges and aiding human sight by increasing the contrast of the sight. MVIIE algorithm is explained in this chapter. Significant image enhancement, by MVIEE, is approved through the experiments in terms of image quality metrics and visual perception.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jain AK (1989) Fundamentals of digital image processing. Prentice-Hall, Inc

    Google Scholar 

  2. Shapiro L, Haralick R (1992) Computer and robot vision. Addison-Wesley, Reading 8

    Google Scholar 

  3. Morishita K, Yokoyama T, Sato K (1992) U.S. Patent No. 5,150,421. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  4. Jain R, Kasturi R, Schunck BG (1995) Machine vision, vol 5. McGraw-Hill, New York

    Google Scholar 

  5. Bovik AC (1995) Digital image processing course notes. Dept. of electrical engineering, U. of Texas, Austin

    Google Scholar 

  6. Aghagolzadeh S, Ersoy OK (1992) Transform image enhancement. Opt Eng 31(3):614–626

    Article  Google Scholar 

  7. Greenspan H, Anderson CH, Akber S (2000) Image enhancement by nonlinear extrapolation in frequency space. IEEE Trans Image Process 9(6):1035–1048

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheng HD, Shi XJ (2004) A simple and effective histogram equalization approach to image enhancement. Digit Sig Process 14(2):158–170

    Article  Google Scholar 

  9. Agaian SS, Silver B, Panetta KA (2007) Transform coefficient histogram-based image enhancement algorithms using contrast entropy. IEEE Trans Image Process 16(3):741–758

    Article  MathSciNet  Google Scholar 

  10. Ibrahim H, Kong NSP (2007) Brightness preserving dynamic histogram equalization for image contrast enhancement. IEEE Trans Consum Electron 53(4):1752–1758

    Article  Google Scholar 

  11. Kong NSP, Ibrahim H (2008) Color image enhancement using brightness preserving dynamic histogram equalization. IEEE Trans Consum Electron 54(4):1962–1968

    Article  Google Scholar 

  12. Xu Y, Weaver JB, Healy DM Jr, Lu J (1994) Wavelet transform domain filters: a spatially selective noise filtration technique. IEEE Trans Image Process 3(6):747–758

    Article  Google Scholar 

  13. Huang K, Wang Q, Wu Z (2004) Color image enhancement and evaluation algorithm based on human visual system. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, May 2004 (ICASSP’04), vol 3. IEEE, pp III–721

    Google Scholar 

  14. Huang KQ, Wang Q, Wu ZY (2006) Natural color image enhancement and evaluation algorithm based on human visual system. Comput Vis Image Underst 103(1):52–63

    Article  Google Scholar 

  15. Demirel H, Anbarjafari G (2011) Image resolution enhancement by using discrete and stationary wavelet decomposition. IEEE Trans Image Process 20(5):1458–1460

    Article  MathSciNet  Google Scholar 

  16. Pelz J (1993), In: Stroebel L, Zakia RD (eds) The focal encyclopedia of photography, 3E edn. Focal Press, p 467

    Google Scholar 

  17. Bach M, Poloschek CM (2006) Optical illusions. Adv Clin Neurosci Rehabil 6(2):20–21

    Google Scholar 

  18. Baldo MVC, Ranvaud RD, Morya E (2002) Flag errors in soccer games: the flash-lag effect brought to real life. Perception 31(10):1205–1210

    Google Scholar 

  19. Bonnet C (1775) Essai analytique sur les facultés de l’âme, vol 1. Cl. Philibert

    Google Scholar 

  20. Rorschach H, Morgenthaler W (1921) Rorschach psychodiagnostik. Ernst Bircher, Bern

    Google Scholar 

  21. Bach M (2006) Optical illusions and visual phenomena

    Google Scholar 

  22. Hermann L (1870) Eine erscheinung simultanen contrastes. Pflügers Arch Eur J Physiol 3(1):13–15

    Article  Google Scholar 

  23. Baumgartner G (1960) Indirekte grössenbestimmung der rezeptiven felder der retina beim menschen mittels der Hermannschen gittertäuschung. Pflügers Arch Eur J Physiol 272(1):21–22

    Article  Google Scholar 

  24. Fraser J (1908) A new visual illusion of direction. British J Psychol 1904–1920, 2(3):307–320

    Google Scholar 

  25. Cucker F (2013). Manifold mirrors: the crossing paths of the arts and mathematics. Cambridge University Press

    Google Scholar 

  26. Zollner F (1860) Ueber eine neue Art von Pseudoskopie und ihre Beziehungen zu den von Plateau und Oppel beschriebenen Bewegungsphanomenen. Ann. Phys. 186(7):500–523

    Article  Google Scholar 

  27. Pierce AH (1898) The illusion of the kindergarten patterns. Psychol Rev 5(3):233

    Article  Google Scholar 

  28. Gregory RL, Heard P (1979) Border locking and the Café Wall illusion. Perception 8(4):365–380

    Article  Google Scholar 

  29. Pinna B (1990) Il dubbio sull’apparire. Upsel

    Google Scholar 

  30. Pinna B, Brelstaff GJ (2000) A new visual illusion of relative motion. Vision Res 40(16):2091–2096

    Article  Google Scholar 

  31. Chi MT, Lee TY, Qu Y, Wong TT (2008) Self-animating images: illusory motion using repeated asymmetric patterns. ACM Trans Graph (TOG) 27(3):62

    Google Scholar 

  32. Kitaoka A (2003) Rotating snakes. a bitmap figure. http://www.ritsumei.ac.jp/akitaoka/index-e.html

  33. Kitaoka A (2006) The effect of color on the optimized Fraser-Wilcox illusion. Gold prize at the 9th L’OR+ AL Art and Science of Color Prize

    Google Scholar 

  34. Conway BR, Kitaoka A, Yazdanbakhsh A, Pack CC, Livingstone MS (2005) Neural basis for a powerful static motion illusion. J Neurosci 25(23):5651–5656

    Article  Google Scholar 

  35. Backus BT, Oruç I (2005) Illusory motion from change over time in the response to contrast and luminance. J Vision 5(11):10

    Article  Google Scholar 

  36. Sohmiya S (2006) A wave-line colour illusion. Perception 36(9):1396–1398

    Article  Google Scholar 

  37. Watanabe I, Anstis S (1997, March) Contour and shading range affect diamond illusion. In: Investigative ophthalmology & Visual science, vol 38, no 4. 227 East Washington SQ, Philadelphia, PA 19106, Lippincott-raven publ, p 4190

    Google Scholar 

  38. Shapiro A, Rose-Henig A (2013) Tusi or Not Tusi. http://www.shapirolab.net/IC2013/TusiorNotTusi_IC2013.pdf

  39. http://www.ibiblio.org/expo/vatican.exhibit/exhibit/d-mathematics/Greek_astro.html

  40. http://illusionoftheyear.com/?p=2955

  41. Anstis S (2003) Moving objects appear to slow down at low contrasts. Neural Netw 16(5–6):933–938

    Google Scholar 

  42. Dürsteler MR (2006) The freezing rotation illusion. J Vis 6(6):547–547

    Article  Google Scholar 

  43. Mach E (1865) On the effect of the spatial distribution of the light stimulus on the retina. Sitzungsber Math Nat Klasse Kaiserl Akad Wiss 52:303–332

    Google Scholar 

  44. Lotto RB, Williams SM, Purves D (1999) Mach bands as empirically derived associations. Proc Natl Acad Sci 96:5245–5250

    Article  Google Scholar 

  45. Agaian SS (1999, March) Visual morphology. In: Electronic Imaging’99. International Society for Optics and Photonics, pp 139–150

    Google Scholar 

  46. Agaian SS, Panetta K, Grigoryan AM (2000) A new measure of image enhancement. In: IASTED International Conference on Signal Processing and Communication, pp 19–22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Khosravy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Khosravy, M., Gupta, N., Marina, N., Sethi, I.K., Asharif, M.R. (2017). Brain Action Inspired Morphological Image Enhancement. In: Patnaik, S., Yang, XS., Nakamatsu, K. (eds) Nature-Inspired Computing and Optimization. Modeling and Optimization in Science and Technologies, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-50920-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50920-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50919-8

  • Online ISBN: 978-3-319-50920-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics