Skip to main content

Application of Learning Classifier Systems to Gene Expression Analysis in Synthetic Biology

  • Chapter
  • First Online:
Nature-Inspired Computing and Optimization

Part of the book series: Modeling and Optimization in Science and Technologies ((MOST,volume 10))

Abstract

Learning classifier systems (LCS) are algorithms that incorporate genetic algorithms with reinforcement learning to produce adaptive systems described by if-then rules. As a new interdisciplinary branch of biology, synthetic biology pursues the design and construction of complex artificial biological systems from the bottom-up. A trend is growing in designing artificial metabolic pathways that show previously undescribed reactions produced by the assembly of enzymes from different sources in a single host. However, few researchers have succeeded thus far because of the difficulty in analyzing gene expression. To tackle this problem, data mining and knowledge discovery are essential. In this context, nature-inspired LCS are well suited to extracting knowledge from complex systems and thus can be exploited to investigate and utilize natural biological phenomena. This chapter focuses on applying LCS to gene expression analysis in synthetic biology. Specifically, it describes the optimization of artificial operon structure for the biosynthesis of metabolic pathway products in Escherichia coli. This optimization is achieved by manipulating the order of multiple genes within the artificial operons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abedini M, Kirley M (2011) Guided rule discovery in XCS for high-dimensional classification problems. In: Wang D, Reynolds M (eds) AI 2011: advances in artificial intelligence. Springer, Heidelberg, pp 1–10

    Chapter  Google Scholar 

  2. Abedini M, Kirley M, Chiong R (2013) Incorporating feature ranking and evolutionary methods for the classification of high-dimensional DNA microarray gene expression data. Australas Med J. doi:10.4066/AMJ.2013.1641

  3. Allison KR, Brynildsen MP, Collins JJ (2011) Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature. doi:10.1038/nature10069

  4. Anderson JC, Clarke EJ, Arkin AP, Voigt CA (2006) Environmentally controlled invasion of cancer cells by engineered bacteria. J Mol Biol. doi:10.1016/j.jmb.2005.10.076

  5. Anderson JC, Dueber JE, Leguia M, Wu GC, Goler JA et al (2010) BglBricks: A flexible standard for biological part assembly. J Biol Eng. doi:10.1186/1754-1611-4-1

  6. Andrianantoandro E, Basu S, Karig DK, Weiss R (2006) Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol. doi:10.1038/msb4100073

  7. Bacardit J (2004) Pittsburgh genetics-based machine learning in the data mining era: representations, generalization, and run-time. PhD thesis, Ramon Llull University, Barcelona

    Google Scholar 

  8. Bacardit J, Burke EK, Krasnogor N (2009) Improving the scalability of rule-based evolutionary learning. Memetic Comput 1:55–67

    Article  Google Scholar 

  9. Bacardit J, Stout M, Hirst JD, Valencia A, Smith RE et al (2009) Automated alphabet reduction for protein datasets. BMC Bioinformatics. doi:10.1186/1471-2105-10-6

  10. Beer MA, Tavazoie S (2004) Predicting gene expression from sequence. Cell 117:185–198

    Article  Google Scholar 

  11. Breiman L (2001) Random Forests. Mach Learn 45:5–32

    Article  MATH  Google Scholar 

  12. Bujara M, Schmperli M, Pellaux R, Heinemann M, Panke S (2011) Optimization of a blueprint for in vitro glycolysis by metabolic real-time analysis. Nat Chem Biol 7:271–277

    Article  Google Scholar 

  13. Bull L (2005) Two simple learning classifier systems. In: Bull L, Kovacs T (eds) Foundations of learning classifier systems. Springer, Heidelberg, pp 63–89

    Google Scholar 

  14. Bull L (2015) A brief history of learning classifier systems: from CS-1 to XCS and its variants. Evol Intell 8:55–70

    Article  Google Scholar 

  15. Bull L, Bernado-Mansilla E, Holmes J (2008) Learning classifier systems in data mining: an introduction. In: Bull L, Bernado-Mansilla E, Holmes J (eds) Learning classifier systems in data mining. Springer, Heidelberg, pp 1–15

    Google Scholar 

  16. Chen YY, Smolke CD (2011) From DNA to targeted therapeutics: bringing synthetic biology to the clinic. Sci Transl Med. doi:10.1126/scitranslmed.3002944

  17. Cheng AA, Lu TK (2012) Synthetic biology: an emerging engineering discipline. Annu Rev Biomed Eng. doi:10.1146/annurev-bioeng-071811150118

  18. Cliff D, Ross S (1994) Adding temporary memory to ZCS. Adapt Behav 3:101–150

    Article  Google Scholar 

  19. Elowitz M, Lim WA (2010) Build life to understand it. Nature 468:889–890

    Article  Google Scholar 

  20. Elvin CM, Thompson PR, Argall ME, Hendr NP, Stamford PJ et al (1990) Modified bacteriophage lambda promoter vectors for overproduction of proteins in Escherichia coli. Gene 87:123–126

    Google Scholar 

  21. Franco MA, Krasnogor N, Bacardit J (2012) Analysing BioHEL using challenging boolean functions. Evol Intell 5:87–102

    Article  Google Scholar 

  22. Friedman N (2004) Inferring cellular networks using probabilistic graphical models. Science 303:799–805

    Article  Google Scholar 

  23. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  Google Scholar 

  24. Glaab E, Bacardit J, Garibaldi JM, Krasnogor N (2012) Using rule-based machine learning for candidate disease gene prioritization and sample classification of cancer gene expression data. PLoS ONE. doi:10.1371/journal.pone.0039932

  25. Golberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Boston

    Google Scholar 

  26. Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313:504–507

    Article  MathSciNet  MATH  Google Scholar 

  27. Hiroe A, Tsuge K, Nomura CT, Itaya M, Tsuge T (2012) Rearrangement of gene order in the phaCAB operon leads to effective production of ultrahigh-molecular-weight poly[(R)-3-Hydroxybutyrate] in genetically engineered Escherichia coli. Appl Environ Microbiol. doi:10.1128/AEM.07715-11

  28. Holland JH (1975) Adaptation in natural and artificial system: an introduction with application to biology, control and artificial intelligence. University of Michigan Press, Ann Arbor

    Google Scholar 

  29. Holland JH (1980) Adaptive algorithms for discovering and using general patterns in growing knowledge bases. Int J Policy Anal Inf Syst 4:245–268

    Google Scholar 

  30. Holland JH (1986) Escaping brittleness: the possibilities of general-purpose learning algorithms applied to parallel rule-based systems. In: Michalski RS, Carbonell JG, Mitchell TM (eds) Machine learning: an artificial intelligence approach. Morgan Kaufmann, Los Altos, pp 593–623

    Google Scholar 

  31. Holland JH, Reitman JS (1978) Cognitive systems based on adaptive algorithms. In: Waterman DA, Hayes-Roth F (eds) Pattern directed inference systems. Academic Press, New York, pp 313–329

    Chapter  Google Scholar 

  32. Holmes JH, Lanzi PL, Stolzmann W, Wilson SW (2002) Learning classifier systems: new models, successful applications. Inf Process Lett. doi:10.1016/S0020-0190(01)00283-6

  33. Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366

    Article  Google Scholar 

  34. Isaacs FJ, Carr PA, Wang HH, Lajoie MJ, Sterling B et al (2011) Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science 333:348–353

    Article  Google Scholar 

  35. Karlic R, Chung HR, Lasserre J, Vlahovicek K, Vingron M (2010) Histone modification levels are predictive for gene expression. Proc Natl Acad Sci USA. doi:10.1073/pnas.0909344107

  36. Kharbat F, Odeh M, Bull L (2008) Knowledge discovery from medical data: an empirical study with XCS. In: Bull L, Bernado-Mansilla E, Holmes J (eds) Learning classifier systems in data mining. Springer, Heidelberg, pp 93–121

    Google Scholar 

  37. Kovacs T (2004) Strength or accuracy: credit assignment in learning classifier systems. Springer, London

    Book  MATH  Google Scholar 

  38. Kushwaha M, Salis H (2015) A portable expression resource for engineering cross-species genetic circuits and pathways. Nat Commun. doi:10.1038/ncomms8832

  39. Larman HB, Zhao Z, Laserson U, Li MZ, Ciccia A et al (2011) Autoantigen discovery with a synthetic human peptidome. Nat Biotechnol 29:535–541

    Article  Google Scholar 

  40. Lee SK, Chou H, Ham TS, Lee TS, Keasling JD (2008) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 19:556–563

    Article  Google Scholar 

  41. Li MZ, Elledge SJ (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4:251–256

    Article  Google Scholar 

  42. Libbrecht MW, Noble WS (2015) Machine learning applications in genetics and genomics. Nat Rev Genet. doi:10.1038/nrg3920

  43. Lim HN, Lee Y, Hussein R (2011) Fundamental relationship between operon organization and gene expression. Proc Natl Acad Sci USA. doi:10.1073/pnas.1105692108

  44. Lu TK, Collins JJ (2007) Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci USA. doi:10.1073/pnas.0704624104

  45. Lu TK, Collins JJ (2009) Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc Natl Acad Sci USA. doi:10.1073/pnas.0800442106

  46. Nakagawa Y, Yugi K, Tsuge K, Itaya M, Yanagawa H et al (2010) Operon structure optimization by random self-assembly. Nat Comput. doi:10.1007/s11047-009-9141-0

  47. Nakata M, Kovacs T, Takadama K (2014) A modified XCS classifier system for sequence labeling. In: Proceedings of the 2014 conference on Genetic and evolutionary computation. ACM Press, New York, pp 565–572

    Google Scholar 

  48. Nishizaki T, Tsuge K, Itaya M, Doi N, Yanagawa H (2007) Metabolic engineering of carotenoid biosynthesis in Escherichia coli by ordered gene assembly in Bacillus subtilis. Appl Environ Microbiol. doi:10.1128/AEM.02268-06

  49. Ouyang Z, Zhou Q, Wong WH (2009) ChIP-Seq of transcription factors predicts absolute and differential gene expression in embryonic stem cells. Proc Natl Acad Sci USA. doi:10.1073/pnas.0904863106

  50. Pfleger BF, Pitera DJ, Smolke CD, Keasling JD (2006) Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol. doi:10.1038/nbt1226

  51. Quinlan JR (1993) C4.5: programs for machine learning. Morgan Kaufmann, San Mateo

    Google Scholar 

  52. Rabinovitch-Deere CA, Oliver JW, Rodriguez GM, Atsumi S (2013) Synthetic biology and metabolic engineering approaches to produce biofuels. Chem Rev. doi:10.1021/cr300361t

  53. Rochat T, Bouloc P, Repoila F (2013) Gene expression control by selective RNA processing and stabilization in bacteria. FEMS Microbiol Lett. doi:10.1111/1574-6968.12162

  54. Smith SF (1980) A learning system based on genetic adaptive algorithms. PhD thesis, University of Pittsburgh

    Google Scholar 

  55. Smith SF (1983) Flexible learning of problem solving heuristics through adaptive search. In: Proceedings of the eighth international joint conference on artificial intelligence. Morgan Kaufmann, San Francisco, pp 421–425

    Google Scholar 

  56. Sutton RS, Barto AG (1998) Reinforcement learning. MIT Press, Cambridge

    Google Scholar 

  57. Tsuge K, Matsui K, Itaya M (2003) One step assembly of multiple DNA fragments with a designed order and orientation in Bacillus subtilis plasmid. Nucleic Acids Res. doi:10.1093/nar/gng133

  58. Urbanowicz RJ, Moore JH (2009) Learning classifier systems: a complete introduction, review, and roadmap. J Artif Evol Appl. doi:10.1155/2009/736398

  59. Watkins C (1989) Learning from delayed rewards. PhD thesis, University of Cambridge

    Google Scholar 

  60. Weber W, Fussenegger M (2012) Emerging biomedical applications of synthetic biology. Nat Rev Genet. doi:10.1038/nrg3094

  61. White MM (2006) Pretty subunits all in a row: using concatenated subunit constructs to force the expression of receptors with defined subunit stoichiometry and spatial arrangement. Mol Pharmacol 69:407–410

    Article  Google Scholar 

  62. Wilson SW (1994) ZCS: a zeroth level classifier system. Evol Comput 2:1–18

    Article  Google Scholar 

  63. Wilson SW (1995) Classifier fitness based on accuracy. Evol Comput 3:149–175

    Article  Google Scholar 

  64. Wright CM, Wright RC, Eshleman JR, Ostermeier M (2011) A protein therapeutic modality founded on molecular regulation. Proc Natl Acad Sci USA. doi:10.1073/pnas.1102803108

  65. Xie Z, Wroblewska L, Prochazka L, Weiss R, Benenson Y (2011) Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science 333:1307–1311

    Article  Google Scholar 

  66. Xu C, Huang R, Teng L, Jing X, Hu J et al (2015) Cellulosome stoichiometry in Clostridium cellulolyticum is regulated by selective RNA processing and stabilization. Nat Commun. doi:10.1038/ncomms7900

  67. Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  Google Scholar 

  68. Zibakhsh A, Abadeh MS (2013) Gene selection for cancer tumor detection using a novel memetic algorithm with a multi-view fitness function. Eng Appl Artif Intell 26:1274–1281

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Yoshihiko Hasegawa and Dr. Hiroshi Dohi of The University of Tokyo give insightful discussions that were significant in this analysis of the operon structure. The authors would also like to especially thank UTDS members Marishi Mochida, Akito Misawa, Takahiro Hashimoto, Kazuki Taniyoshi, Yuki Inoue and Mari Sasaki for making a writing environment so pleasant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhee Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Han, C., Tsuge, K., Iba, H. (2017). Application of Learning Classifier Systems to Gene Expression Analysis in Synthetic Biology. In: Patnaik, S., Yang, XS., Nakamatsu, K. (eds) Nature-Inspired Computing and Optimization. Modeling and Optimization in Science and Technologies, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-50920-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50920-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50919-8

  • Online ISBN: 978-3-319-50920-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics