Comparative Study of Optical Filtering Schemes for Convergent Access Network

  • Oscar Julian Castiblanco-Pardo
  • Joan Camilo Valencia-Montaña
  • Gustavo Adolfo Puerto-LeguizamónEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 657)


Searching for solutions to cope with the increasing demand of bandwidth in communications networks, the approach of sending Radio Frequency (RF) signals through optical fiber has raised as a potential solution to this issue. Such architecture is known as radio over fiber system (RoF). In order to enhance these kinds of systems, it is necessary to improve the optical reception to efficiently detect both signals (baseband and RF). This paper presents the summarized results of the comparative study of three optical filtering schemes: Fabry-Perot filter, Fiber Bragg Gratings (FBG) and Sagnac interferometer through the analysis of the Bit Error Rate (BER) obtained by simulations.


Optical fibers Fabry-Perot Bragg gratings Sagnac interferometers Birefringence 


  1. 1.
    Varghese, A.T., Mohammed, E., Lajos, H.: Performance improvement and cost reduction techniques for radio over fiber communications. IEEE Commun. Surv. Tutorials 17(2), 627–670 (2015)CrossRefGoogle Scholar
  2. 2.
    López, E.: Estudio Teórico y Simulación de un OTDR para Sistemas de Comunicaciones por Fibra Óptica. Universidad Politécnica de Madrid (2013)Google Scholar
  3. 3.
    Jianxin, M., Yanjie, L.: A full-duplex multiband access radio-over-fiber link with frequency multiplying millimeter-wave generation and wavelength reuse for upstream signal. Opt. Commun. 334, 22–26 (2015)CrossRefGoogle Scholar
  4. 4.
    Ruiz, M.A.: Diseño de un Analizador de Espectros Ópticos Basado en un Filtro Sintonizable Fabry-Perot (2004)Google Scholar
  5. 5.
    Suliman, T., Subramaniam, S.: Fabry Perot Filter Analysis and Simulation Using Matlab (2012)Google Scholar
  6. 6.
    Ramaswami, R., Sivarajan, K., Sasaki, G.: Optical Networks: a Practical Perspective. Morgan Kaufmann, Burlington (2010)Google Scholar
  7. 7.
    Erdogan, T., Mizrahi, V., Lemaire, P., Monroe, D.: Decay of ultraviolet-induced fiber bragg gratings. J. Appl. Phys. 76(1), 73–80 (1994)CrossRefGoogle Scholar
  8. 8.
    VPI Systems: Photonic Modules Reference Manual, p. 1577 (2002)Google Scholar
  9. 9.
    Hill, K.O., Meltz, G.: Fiber bragg grating technology fundamentals and overview. J. Lightwave Technol. 15(8), 1263–1276 (1997)CrossRefGoogle Scholar
  10. 10.
    Mortimore, D.B.: Fiber loop reflectors. J. Lightwave Technol. 6(7), 1217–1224 (1988)CrossRefGoogle Scholar
  11. 11.
    Estudillo-Ayala, J., Kuzin, E., Ibarra-Escamilla, B., Rojas-Laguna, R.: Teoría del Interferómetro de Sagnac de Fibra de Baja Birrefringencia y Torcida. Rev. Mex. Fís. 47(3), 271–274 (2001)Google Scholar
  12. 12.
    Xinying, L., Jiangnan, X., Yuming, X., Jianjun, Y.: QPSK vector signal generation based on photonic heterodyne beating and optical carrier suppression. IEEE Photonics J. 7(5) (2015)Google Scholar
  13. 13.
    Puerto, G., Ortega, B., Capmany, J., Suárez, C.: Architecture and performance of optical packet switching router architecture for future Internet networks. Rev. Fac. Ing. Univ. Antioquia 55 (2010)Google Scholar
  14. 14.
    Puerto, G., Suárez, C.: Analytical model of signal generation for radio over fiber systems. DYNA 81(188), 26–33 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Oscar Julian Castiblanco-Pardo
    • 1
  • Joan Camilo Valencia-Montaña
    • 1
  • Gustavo Adolfo Puerto-Leguizamón
    • 1
    Email author
  1. 1.Universidad Distrital Francisco José de CaldasBogotáColombia

Personalised recommendations