Advertisement

Discrete Time Nested-Loop Controller for the Output Stage of a Photovoltaic Microinverter

  • Oswaldo Lopez-SantosEmail author
  • Luis Cortes-Torres
  • Sebastián Tilaguy-Lezama
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 657)

Abstract

This paper presents a comprehensive study of the digital implementation of the control requirements of the output stage of a two-stage solar microinverter. This approach uses a synchronized nested-loop controller which ensures the tracking of an internally generated high-quality current reference, the estimation and cancelation of the effect of the DC-link voltage ripple in the control loops and the regulation of the average value of the DC-link voltage. The proposed control architecture is validated by means of simulation results comparing operation of the inverter using continuous time, quasi-discrete time and discrete time implementations.

Keywords

Microinverter Two-stage microinverter Cascade control Nested-loop controller 

Notes

Acknowledgements

This research is being developed with the partial support of the Gobernación del Tolima under Convenio de cooperación 1026 - 2013 - Research Culture. The results presented in this paper have been obtained with the assistance of students from the Research Hotbed on Power Electronic Conversion (SICEP), Research Group D+TEC, Universidad de Ibagué, Ibagué-Colombia.

References

  1. 1.
    Jiang, S., Cao, D., Li, Y., Peng, F.Z.: Grid-connected boost-half-bridge photovoltaic microinverter system using repetitive current control and maximum power point tracking. IEEE Trans. Power Electron. 27(1), 4711–4722 (2012)CrossRefGoogle Scholar
  2. 2.
    Patrao, I., Figueres, E., González-Espín, F., Garcerá, G.: Transformerless topologies for grid-connected single-phase photovoltaic inverters. Renew. Sustain. Energy Rev. 15(7), 3423–3431 (2011)CrossRefGoogle Scholar
  3. 3.
    Ahmed, M.E.S., Orabi, M., Abdelrahim, O.M.: Two-stage micro-grid inverter with high-voltage gain for photovoltaic applications. IET Power Electron. 6(9), 1812–1821 (2013)CrossRefGoogle Scholar
  4. 4.
    Gazoli, J.R., Villalva, M.G., Siqueira, T.G., Ruppert, E.: Micro-inverter for integrated grid-tie PV module using resonant controller. In: Proceedings IEEE Power and Energy Society General Meeting, San Diego, CA, pp. 1–8 (2012)Google Scholar
  5. 5.
    Zengin, S., Boztepe, M.: Evaluation of two-stage soft-switched flyback micro-inverter for photovoltaic applications. In: Proceedings 8th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, pp. 92–96 (2013)Google Scholar
  6. 6.
    Karimi-Ghartemani, M., Khajehoddin, S.A., Jain, P., Bakhshai, A.: A systematic approach to DC-bus control design in single-phase grid-connected renewable converters. IEEE Trans. Power Electron. 28(7), 3158–3166 (2013)CrossRefGoogle Scholar
  7. 7.
    Khajehoddin, S.A., Karimi-Ghartemani, M., Jain, P.K., Bakhshai, A.: DC-bus design and control for a single-phase grid-connected renewable converter with a small energy storage component. IEEE Trans. Power Electron. 28(7), 3245–3254 (2013)CrossRefGoogle Scholar
  8. 8.
    Lopez-Santos, O., Garcia, G., Martinez-Salamero, L., Avila-Martinez, J.C., Seguier, L.: Non-linear control of the output stage of a solar microinverter. Intl. J. Control, 1–20 (2015). doi: 10.1080/00207179.2015.1116126
  9. 9.
    Lopez-Santos, O., Martinez-Salamero, L., Garcia, G., Valderrama-Blavi, H.: Sliding-mode control of a transformer-less dual-stage grid-connected photovoltaic micro-inverter. In: Proceedings 10th IEEE International Multi-Conference on Systems, Signals & Devices (SSD), Tunisia, pp. 1–6 (2013)Google Scholar
  10. 10.
    Lopez-Santos, O., Garcia, G., Martinez-Salamero, L., Cortes-Torres, L.: Suppressing the effect of the DC-link voltage ripple on the current control of a sliding-mode controlled microinverter. In: Proceedings Chilean Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), pp. 447–452 (2015)Google Scholar
  11. 11.
    Lopez-Santos, O., Garcia, G., Avila-Martinez, J.C., Gonzalez-Morales, D.F., Toro-Zuluaga, C.: A simple digital sinusoidal reference generator for grid-synchronized power electronics applications. In: Proceedings IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), pp. 1–6 (2015)Google Scholar
  12. 12.
    Lai, W.F., Chen, S.M., Liang, T.J., Lee, K.W., Ioinovici, A.: Design and implementation of grid connection photovoltaic micro inverter. In: IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, pp. 2426–2432 (2012)Google Scholar
  13. 13.
    AN1338, Application Note.: Grid-Connected Solar Microinverter Reference Design Using a dsPIC® Digital Signal Controller. Microchip Technology Inc., pp. 1–56 (2011)Google Scholar
  14. 14.
    Jiang, S., Cao, D., Li, Y., Peng, F.Z.: Grid-connected boost-half-bridge photovoltaic microinverter system using repetitive current control and maximum power point tracking. IEEE Trans. Power Electron. 27(11), 4711–4722 (2012)CrossRefGoogle Scholar
  15. 15.
    Ogata, K.: Discrete-Time Control Systems, 2nd edn, pp. 1–994. Prentice Hall, Englewood Cliffs (1995)Google Scholar
  16. 16.
    Buso, S., Mattavelli, P.: Digital control in power electronics. In: Lectures on Power Electronics, pp. 1–158. Morgan & Claypool Publishers (2006)Google Scholar
  17. 17.
    Emadi, A., Khaligh, A., Nie, Z., Lee, Y.J.: Integrated Power Electronic Converters and Digital Control, pp. 1–350. CRC Press (2009)Google Scholar
  18. 18.
    Jiabing, H., Zhu, Z.Q., Nian, H., Shang, L., He, L.: Sliding mode current control of grid-connected voltage source converter. In: Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), pp. 912–919 (2010)Google Scholar
  19. 19.
    Kim, I.-S.: Sliding mode controller for the single-phase grid-connected photovoltaic system. Appl. Energy 83, 1101–1115 (2006)CrossRefGoogle Scholar
  20. 20.
    Flores-Bahamonde, F., Valderrama-Blavi, H., Bosque-Moncusi, J.M., García, G., Martínez-Salamero, L.: Using the sliding-mode control approach for analysis and design of the boost inverter. IET Power Electron. 9(8), 1625–1634 (2016)CrossRefGoogle Scholar
  21. 21.
    Marcos-Pastor, A., Vidal-Idiarte, E., Cid-Pastor, A., Martinez-Salamero, L.: Interleaved digital power factor correction based on the sliding-mode approach. IEEE Trans. Power Electron. 31(6), 4641–4653 (2016)CrossRefGoogle Scholar
  22. 22.
    Vidal-Idiarte, E., Carrejo, C.E., Calvente, J., Martinez-Salamero, L.: Two-loop digital sliding mode control of DC–DC power converters based on predictive interpolation. IEEE Trans. Industr. Electron. 58(6), 2491–2501 (2011).CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Oswaldo Lopez-Santos
    • 1
    Email author
  • Luis Cortes-Torres
    • 1
  • Sebastián Tilaguy-Lezama
    • 1
  1. 1.Program of Electronics EngineeringUniversidad de IbaguéIbaguéColombia

Personalised recommendations