Advertisement

Overvoltage Protection for Distributed Maximum Power Point Tracking Converters in Series Connection

  • Carlos Andrés Ramos-PajaEmail author
  • Andrés Julián Saavedra-Montes
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 657)

Abstract

Distributed maximum power point tracking (DMPPT) circuits are useful to improve the power production of photovoltaic (PV) systems operating under mismatched conditions such as partial shading. The main option to implement DMPPT circuits is the series connection of PV systems based on dc/dc converters, however those converters are subjected to overvoltage conditions that could damage the circuit. This paper proposes a sliding-mode control technique to avoid overvoltage conditions, which ensures the circuit operation in a safe operating point.

Keywords

Safety Sliding-mode Granular MPPT Grid connection 

Notes

Acknowledgments

This work was supported by the Universidad Nacional de Colombia and Colciencias (Fondo nacional de financiamiento para ciencia, la tecnología y la innovación Francisco José de Caldas) under the projects MicroRENIZ-25439 (Code 1118-669-46197) and DIGEMICRO-30773 and under the doctoral scholarship 095-2005.

References

  1. 1.
    Kabir, M.N., Mishra, Y., Ledwich, G., Dong, Z.Y., Wong, K.P.: Coordinated control of grid-connected photovoltaic reactive power and battery energy storage systems to improve the voltage profile of a residential distribution feeder. IEEE Trans. Ind. Inform. 10(2), 967–977 (2014)CrossRefGoogle Scholar
  2. 2.
    Romero-Cadaval, E., Spagnuolo, G., Franquelo, L.G., Ramos-Paja, C.A., Suntio, T., Xiao, W.M.: Grid-connected photovoltaic generation plants: components and operation. IEEE Ind. Electron. Mag. 7(3), 6–20 (2013)CrossRefGoogle Scholar
  3. 3.
    Spagnuolo, G., Petrone, G., Lehman, B., Ramos-Paja, C.A., Zhao, Y., Orozco, M.L.: Control of photovoltaic arrays: dynamical reconfiguration for fighting mismatched conditions and meeting load requests. IEEE Ind. Electron. Mag. 9(1), 62–76 (2015)CrossRefGoogle Scholar
  4. 4.
    Bastidas-Rodriguez, J.D., Franco, E., Petrone, G., Ramos-Paja, C.A., Spagnuolo, G.: Maximum power point tracking architectures for photovoltaic systems in mismatching conditions: a review. IET Power Electron. 7(6), 1396–1413 (2014)CrossRefGoogle Scholar
  5. 5.
    Femia, N., Lisi, G., Petrone, G., Spagnuolo, G., Vitelli, M.: Distributed maximum power point tracking of photovoltaic arrays: novel approach and system analysis. IEEE Trans. Ind. Electron. 55(7), 2610–2621 (2008)CrossRefGoogle Scholar
  6. 6.
    Erickson, R.W., Maksimovic, D.: Fundamentals of power electronics. Springer Science & Business Media (2007)Google Scholar
  7. 7.
    Ramos-Paja, C., Saavedra-Montes, A., Vitelli, M.: Distributed maximum power point tracking with overvoltage protection for pv systems. DYNA 80(178), 141–150 (2013)Google Scholar
  8. 8.
    Gonzales, D., Ramos-Paja, C.A., Giral, R.: Improved design of sliding-mode controllers based on the requirements of mppt techniques. IEEE Trans. Power Electron. 31(1), 235–247 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Carlos Andrés Ramos-Paja
    • 1
    Email author
  • Andrés Julián Saavedra-Montes
    • 1
  1. 1.Departamento de Energía Eléctrica y AutomáticaUniversidad Nacional de ColombiaMedellínColombia

Personalised recommendations