On-line Visualization and Long-Term Monitoring of a Single-Phase Photovoltaic Generator Using SCADA

  • Oswaldo Lopez-SantosEmail author
  • Jhon S. Arango-Buitrago
  • David F. González-Morales
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 657)


This paper describes the design and implementation of a Supervisory, Control & Data Acquisition (SCADA) system dedicated to realize on-line visualization and long-term monitoring of the performance of a single-phase single-module photovoltaic grid-connected installation. The main objective of this development is to ensure continuous monitoring of the efficiency and relevant power quality indicators of a two-stage microinverter providing a comprehensive treatment of the electrical variables. The system consists of a software component developed in LabVIEW and a hardware component including specialized sensors and analogue electronics. Both components communicate synchronously through an acquisition card, which enhances visualization and accuracy of computations. The mathematical expressions employed to obtain variables and indicators are listed, explained and verified by means of simulated results.


SCADA Photovoltaic generators Two-stage microinverter Grid-connected installation Power quality 



This work has been developed with the partial support of the Gobernación del Tolima under Convenio de cooperación 1026 - 2013 - Scientific Culture Project. The results presented in this paper have been obtained with the assistance of students from the Research Hotbed on Power Electronic Conversion (SICEP), Research Group D+TEC, Universidad de Ibagué, Ibagué-Colombia.


  1. 1.
    Sher, H.A., Addoweesh, K.E.: Micro-inverters - promising solutions in solar photovoltaics. Energy. Sustain. Dev. 16, 389–400 (2012)CrossRefGoogle Scholar
  2. 2.
    Blaabjerg, F., Chen, Z., Kjaer, S.B.: Power electronics as efficient interface in dispersed power generation systems. IEEE Trans. Power Electron. 5, 1184–1194 (2004)CrossRefGoogle Scholar
  3. 3.
    Xue, Y., Chang, L., Kjaer, S.B., Bordonau, J., Shimizu, T.: Topologies of single-phase inverters for small distributed power generators: an overview. IEEE Trans. Power Electron. 5, 1305–1314 (2004)CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Gagnon, P., Margolis, R., Meluis, J., Philips, C., Elmore, R.: Rooftop Solar Photovoltaic Technical Potential in the United States: A Detailed Assessment. In: National Renewable Energy Laboratory (NREL), Technical report (2016)Google Scholar
  6. 6.
    Gaona, E.E., Trujillo, C.L., Guacaneme, J.A.: Rural microgrids and its potential application in Colombia. Renew. Sustain. Energy Rev. 51, 125–137 (2015)CrossRefGoogle Scholar
  7. 7.
    Lopez-Santos, O.: Contribution to the DC-AC conversion in photovoltaic systems: module oriented converters, Doctoral dissertation, INSA de Toulouse, pp. 1–248 (2015)Google Scholar
  8. 8.
    Edwin, F.F., Weidong, X., Khadkikar, V.: Dynamic modeling and control of interleaved flyback module-integrated converter for PV power applications. IEEE Trans. Ind. Electron. 61(3), 1377–1388 (2014)CrossRefGoogle Scholar
  9. 9.
    Sukesh, N., Pahlevaninezhad, M., Jain, P.K.: Analysis and implementation of a single-stage flyback PV microinverter with soft switching. IEEE Trans. Ind. Electron. 61(4), 1819–1833 (2014)CrossRefGoogle Scholar
  10. 10.
    Lopez-Santos, O., Martinez-Salamero, L., Garcia, G., Valderrama-Blavi, H.: Sliding-mode control of a transformer-less dual-stage grid-connected photovoltaic micro-inverter. In: Proceedings of the 10th International Multi-Conference on Systems, Signals & Devices (SSD) 2013, pp. 1–6 (2013)Google Scholar
  11. 11.
    Dominic, J.C.: Comparison and Design of High Efficiency Microinverters for Photovoltaic Applications. Master thesis, Virginia Polytechnic Institute and State University, pp. 1–109 (2014)Google Scholar
  12. 12.
    Drews, A., de Keizer, A.C., Beyer, H.G., Lorenz, E., Betcke, J., van Sark, W.G.J.H.M., Heydenreich, W., Wiemken, E., Stettler, S., Toggweiler, P., Bofinger, S., Schneider, M., Heilscher, G., Heinemann, D.: Monitoring and remote failure detection of grid-connected PV systems based on satellite observations. Sol. Energy 81(4), 548–564 (2007)CrossRefGoogle Scholar
  13. 13.
    Polo, F.A.O., del Rosario, J.J.A., García, G.C.: Supervisory control and automatic failure detection in grid-connected photovoltaic systems. In: Proceedings of the International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, pp. 458–467 (2010)Google Scholar
  14. 14.
    Bayrak, G., Kabalci, E., Cebeci, M.: Real time power flow monitoring in a PLL inverter based PV distributed generation system. In: Proceedings of the 16th International Power Electronics and Motion Control Conference and Exposition (PEMC), pp. 1035–1040 (2014)Google Scholar
  15. 15.
    Mujumdar, U.B., Tutkane, D.R.: Development of integrated hardware set up for solar photovoltaic system monitoring. In: Proceedings of the Annual IEEE India Conference (INDICON) (2013)Google Scholar
  16. 16.
    Won, D.J., Chung, I.Y., Kim, J.M., Moon, S.I., Seo, J.C., Choe, J.W.: Development of power quality monitoring system with central processing scheme. In: Proceedings of the IEEE Power Engineering Society Summer Meeting, vol. 2, pp. 915–919 (2002)Google Scholar
  17. 17.
    Abidullah, N.A., Abdullah, A.R., Shamsudin, N.H., Ahmad, N.H.T.H., Jopri, M.H.: Real-time power quality signals monitoring system. In: Proceedings of the IEEE Student Conference on Research and Development (SCOReD), pp. 433–438 (2013)Google Scholar
  18. 18.
    Yingkayun, K., Premrudeepreechacharn, S.: A power quality monitoring system for real-time detection of power fluctuations. In: Proceedings of the 40th North American Power Symposium (NAPS), pp. 1–5 (2008)Google Scholar
  19. 19.
    Chouder, A., Silvestre, S.: Automatic supervision and fault detection of PV systems based on power losses analysis, energy conversion and management. Energy Convers. Manage. 51(10), 1929–1937 (2010)CrossRefGoogle Scholar
  20. 20.
    Zhang, M., Li, K.: A power quality monitoring system over the internet. In: Proceedings of the 1st International Conference on Information Science and Engineering (ICISE), pp. 1577–1580 (2009)Google Scholar
  21. 21.
    Ben Belghith, O., Sbita, L.: Remote GSM module monitoring and Photovoltaic system control. In: Proceedings of the International Conference Green Energy, pp. 188–192 (2014)Google Scholar
  22. 22.
    Bayrak, G., Cebeci, M.: Monitoring a grid connected PV power generation system with Labview. In: International Conference on Renewable Energy Research and Applications (ICRERA), pp. 562–567, 20–23 (2013)Google Scholar
  23. 23.
    Padhee, S., Singh, Y.: Data logging and supervisory control of process using LabVIEW. In: Students’ Technology Symposium (TechSym), pp. 329–334, 14–16 (2011)Google Scholar
  24. 24.
    Vergura, S., Natangelo, E.: Labview interface for data analysis of PV. In: International Conference Clean Electrical Power, pp. 236–241 (2009)Google Scholar
  25. 25.
    Kaminský, D., Bilik, P., Hula, J.: Desarrollo de una plataforma completa de análisis de calidad de energía utilizando NI CompactRIO.
  26. 26.
    Van Dyk, E.E., Meyer, E.L., Vorster, F.J., Leitch, A.W.R.: Long-term monitoring of photovoltaic devices. Renew. Energy 25(2), 183–197 (2002)CrossRefGoogle Scholar
  27. 27.
    Lopez-Santos, O., Garcia, G., Avila-Martinez, J.C., Gonzalez-Morales, D.F., Toro-Zuluaga, C.: A simple digital sinusoidal reference generator for grid-synchronized power electronics applications. In: IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), pp. 1–6 (2015)Google Scholar
  28. 28.
    Lopez-Santos, O., Garcia, G., Martinez-Salamero, L., Cortes-Torres, L.: Suppressing the effect of the DC-link voltage ripple on the current control of a sliding-mode controlled microinverter. In: Proceedings of the CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), Santiago, pp. 447–452 (2015)Google Scholar
  29. 29.
    Shaffer, R.A.: Fundamentals of Power Electronics with MATLAB. Charles River Media, Boston (2007)Google Scholar
  30. 30.
    Akagi, H., Watanabe, E.H., Aredes, M.: Instantaneous Power Theory and Applications to Power Conditioning, pp. 1–379. John Wiley & Sons, Hoboken (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Oswaldo Lopez-Santos
    • 1
    Email author
  • Jhon S. Arango-Buitrago
    • 1
  • David F. González-Morales
    • 1
  1. 1.Program of Electronics EngineeringUniversidad de IbaguéIbaguéColombia

Personalised recommendations