Advertisement

A Model for Fuzzy-Cost Travel Distribution Problems Using Entropy Measures

  • Jenny Paola León
  • Juan Carlos Figueroa-GarcíaEmail author
  • Héctor López-Ospina
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 657)

Abstract

This paper presents a model for solving probabilistic travel distribution problems that involves fuzzy uncertainty. Using entropy measures for interval-valued problems, we extend those results to a fuzzy environment via extension principle and nonlinear mathematical programming methods. An application example is solved using the proposed fuzzy entropy method in order to analyze their results.

Keywords

Travel distribution problems Fuzzy sets Entropy maximization 

References

  1. 1.
    Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall, Upper Saddle River (1995)zbMATHGoogle Scholar
  2. 2.
    Klir, G.J., Folger, T.A.: Fuzzy Sets, Uncertainty and Information. Prentice Hall, Upper Saddle River (1992)zbMATHGoogle Scholar
  3. 3.
    Bazaraa, M.S., Jarvis, J.J., Sherali, H.D.: Linear Programming and Networks Flow. Wiley, New York (1998)Google Scholar
  4. 4.
    Carlsson, C., Fedrizzi, M., Fullér, R.: Fuzzy Logic in Management, vol. 66. Springer, New York (2012)zbMATHGoogle Scholar
  5. 5.
    Ortúzar, J., Willumsen, L.G.: Modelos de distribución zonal. Modelos de Transporte 1, 265–271 (2008)Google Scholar
  6. 6.
    Fang, S., Rajasekera, J., Tsao, H.: Entropy Optimization and Mathematical Programming. Operations Research & Management Science, vol. 8. Kluwer Academic Publishers, New York (1997)zbMATHGoogle Scholar
  7. 7.
    Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 393 (1948)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Romik, D.: Stiriling’s approximation for \(n!\): the ultimate short proof? Am. Math. Monthly 107, 556–567 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    López-Ospina, H.: Modelo de maximización de la entropía y costos generalizados intervalares para la distribución de viajes urbanos. Ingeniería y Universidad 17, 390–407 (2013)Google Scholar
  10. 10.
    Yager, R.: A procedure for ordering fuzzy subsets of the unit interval. Inf. Sci. 24, 143–161 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Figueroa-García, J.C.: A general model for linear programming with interval type-2 fuzzy technological coefficients. In: 2012 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS), pp. 1–6 (2012)Google Scholar
  12. 12.
    Wu, D., Mendel, J.M.: Uncertainty measures for interval type-2 fuzzy sets. Inf. Sci. 177, 5378–5393 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Jenny Paola León
    • 1
  • Juan Carlos Figueroa-García
    • 1
    Email author
  • Héctor López-Ospina
    • 2
  1. 1.Universidad Distrital Francisco José de CaldasBogotáColombia
  2. 2.Pontificia Universidad JaverianaBogotáColombia

Personalised recommendations