A Note About Sensitivity Analysis for the Soft Constraints Model

  • Germán Jairo Hernández-Pérez
  • Juan Carlos Figueroa-GarcíaEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 657)


In this paper we analyze some cases where the Soft Constraints of a fuzzy LP Linear Programming model can be changed, which is known as Sensitivity analysis. Other related properties are also glimpsed and discussed in order to see how this model is sensible to changes in the parameters in their constraints. Some examples are provided and the results are discussed.


Sensitivity analysis Fuzzy linear programming Soft constraints 


  1. 1.
    Zimmermann, H.J.: Fuzzy programming and Linear Programming with several objective functions. Fuzzy Sets Syst. 1, 45–55 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Zimmermann, H.J., Fullér, R.: Fuzzy reasoning for solving fuzzy mathematical programming problems. Fuzzy Sets Syst. 60, 121–133 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Rommelfanger, H.: Entscheiden bei UnschSrfe - Fuzzy Decision Support-Systeme, 2nd edn. Springer, Heidelberg (1994)CrossRefzbMATHGoogle Scholar
  4. 4.
    Rommelfanger, H.: A general concept for solving linear multicriteria programming problems with crisp, fuzzy or stochastic values. Fuzzy Sets Syst. 158, 1892–1904 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Rommelfanger, H.: FULPAL - an interactive method for solving multiobjective fuzzylinear programming problems, pp. 279–299. Reidel, Dordrecht (1990)Google Scholar
  6. 6.
    Rommelfanger, H. In: FULP - A PC-supported procedure for solving multicriteria linear programming problems with fuzzy data. Springer-Verlag 154–167(1991)Google Scholar
  7. 7.
    Fiedler, M., Nedoma, J., Ramík, J., Rohn, J., Zimmermann, K.: Linear Optimization Problems with Inexact Data. Springer-Verlag (2006)Google Scholar
  8. 8.
    Ramík, J.: Optimal solutions in optimization problem with objective function depending on fuzzy parameters. Fuzzy Sets Syst. 158, 1873–1881 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ramík, J.: Soft computing: overview and recent developments in fuzzy optimization. Technical report, Institute for Research and Applications of Fuzzy Modeling (2001)Google Scholar
  10. 10.
    R̆imánek, R.: k: inequality relation between fuzzy numbers and its use in fuzzy optimization. Fuzzy Sets Syst. 16, 123–138 (1985)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gasimov, R.N., Yenilmez, K.: Solving fuzzy linear programming problems with linear membership functions. Turk. J. Math. 26, 375–396 (2002)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Černý, M., Hladík, M.: Optimization with uncertain, inexact or unstable data: linear programming and the interval approach. In: Němec, R., Zapletal, F. (eds.) Proceedings of the 10th International Conference on Strategic Management and its Support by Information Systems, pp. 35–43. VŠB - Technical University of Ostrava (2013)Google Scholar
  13. 13.
    Hladík, M.: Weak and strong solvability of interval linear systems of equations and inequalities. Linear Algebra Appl. 438, 4156–4165 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hamacher, H., Leberling, H., Zimmermann, H.-J.: Sensitivity analysis in fuzzy linear programming. Fuzzy Sets Syst. 1, 269–281 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Manag. Sci. 17, 141–164 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall, Upper Saddle River (1995)zbMATHGoogle Scholar
  17. 17.
    Klir, G.J., Folger, T.A.: Fuzzy Sets, Uncertainty and Information. Prentice Hall, Upper Saddle River (1992)zbMATHGoogle Scholar
  18. 18.
    Lai, Y.J., Hwang, C.: Fuzzy Mathematical Programming. Springer, Heidelberg (1992)CrossRefzbMATHGoogle Scholar
  19. 19.
    Ross, T.J.: Fuzzy Logic with Engineering Applications. Mc Graw Hill, New York (1995)zbMATHGoogle Scholar
  20. 20.
    Kacprzyk, J., Orlovski, S.A.: Optimization Models Using Fuzzy Sets and Possibility Theory. Kluwer Academic Press, Boston (1987)CrossRefzbMATHGoogle Scholar
  21. 21.
    Tanaka, H., Asai, K.: Fuzzy solution in fuzzy linear programming problems. IEEE Trans. Syst. Man Cybern. 14, 325–328 (1984)CrossRefzbMATHGoogle Scholar
  22. 22.
    Tanaka, H., Asai, K., Okuda, T.: On fuzzy mathematical programming. J. Cybern. 3, 37–46 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Figueroa-García, J.C., Hernández, G.: Linear Programming with Interval Type-2 fuzzy constraints. In: Ceberio, M., Kreinovich, V. (eds.) Constraint Programming and Decision Making. Studies in Computational Intelligence, vol. 539, pp. 19–34. Springer, Heidelberg (2014)Google Scholar
  24. 24.
    Figueroa-García, J.C., Hernández, G.: Behavior of the soft constraints method applied to interval type-2 fuzzy linear programming problems. In: Huang, D.-S., Jo, K.-H., Zhou, Y.-Q., Han, K. (eds.) ICIC 2013. LNCS, vol. 7996, pp. 101–109. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39482-9_12 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Germán Jairo Hernández-Pérez
    • 1
  • Juan Carlos Figueroa-García
    • 2
    Email author
  1. 1.Universidad Nacional de ColombiaBogotáColombia
  2. 2.Universidad Distrital Francisco José de CaldasBogotáColombia

Personalised recommendations