Advertisement

On Computing the Footprint of Uncertainty of an Interval Type-2 Fuzzy Set as Uncertainty Measure

  • Juan Carlos Figueroa-GarcíaEmail author
  • Germán Jairo Hernández-Pérez
  • Yurilev Chalco-Cano
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 657)

Abstract

This paper presents a uncertainty measure of an Interval Type-2 fuzzy set based on its Footprint of Uncertainty. The proposed measure provides information about the amount of uncertainty contained into an Interval Type-2 fuzzy set. Some relationships between the proposed measure and other well known measures of an Interval Type-2 fuzzy set as the centroid, variance, cardinality, etc. are defined and illustrated through some application examples.

Keywords

Interval Type-2 fuzzy sets Cardinality Uncertainty measure 

References

  1. 1.
    Mendel, J.M., John, R.I., Liu, F.: Interval type-2 fuzzy logic systems made simple. IEEE Trans. Fuzzy Syst. 14, 808–821 (2006)CrossRefGoogle Scholar
  2. 2.
    Sepúlveda, R., Castillo, O., Melin, P., Rodríguez-Díaz, A., Montiel, O.: Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic. Inf. Sci. 177, 2023–2048 (2007)CrossRefGoogle Scholar
  3. 3.
    Wu, D., Tan, W.W.: Genetic learning and performance evaluation of interval type-2 fuzzy logic controllers. Eng. Appl. Artif. Intell. 19, 829–841 (2006)CrossRefGoogle Scholar
  4. 4.
    Castillo, O., Aguilar, L., Cázarez, N., Cárdenas, S.: Systematic design of a stable type-2 fuzzy logic controller. Appl. Soft Comput. 8, 1274–1279 (2008)CrossRefGoogle Scholar
  5. 5.
    Figueroa-García, J.C.: Solving fuzzy linear programming problems with interval type-2 RHS. In: Conference on Systems, Man and Cybernetics, pp. 1–6. IEEE (2009)Google Scholar
  6. 6.
    Figueroa-García, J.C.: Interval type-2 fuzzy linear programming: uncertain constraints. In: IEEE Symposium Series on Computational Intelligence, pp. 1–6. IEEE (2011)Google Scholar
  7. 7.
    Figueroa-García, J.C.: A general model for linear programming with interval type-2 fuzzy technological coefficients. In: Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS), pp. 1–6. IEEE (2012)Google Scholar
  8. 8.
    Figueroa-García, J.C., Hernández, G.: A method for solving linear programming models with interval type-2 fuzzy constraints. Pesquisa Operacional 34, 73–89 (2014)CrossRefGoogle Scholar
  9. 9.
    Figueroa-García, J.C., Hernández, G.: Linear programming with interval type-2 fuzzy constraints. In: Ceberio, M., Kreinovich, V. (eds.) Constraint Programming and Decision Making. SCI, vol. 539, pp. 19–34. Springer International Publishing, Cham (2014). doi: 10.1007/978-3-319-04280-0_4 CrossRefGoogle Scholar
  10. 10.
    Wu, D., Mendel, J.M.: Uncertainty measures for interval type-2 fuzzy sets. Inf. Sci. 177, 5378–5393 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hung, W.L., Yang, M.S.: Similarity measures between type-2 fuzzy sets. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 12, 827–841 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Zheng, G., Wang, J., Zhou, W., Zhang, Y.: A similarity measure between interval type-2 fuzzy sets. In: IEEE International Conference on Mechatronics and Automation, pp. 191–195. IEEE (2010)Google Scholar
  13. 13.
    Figueroa-García, J.C.: Interval type-2 fuzzy markov chains: an approach. In: 2007 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS), vol. 28, pp. 1–6 (2010)Google Scholar
  14. 14.
    Figueroa-García, J.C.: Interval type-2 fuzzy Markov Chains. In: Sadeghian, A., Mendel, J.M., Tahayori, H. (eds.) Advances in Type-2 Fuzzy Sets and Systems, vol. 301, pp. 49–64. Springer, New York (2013). doi: 10.1007/978-1-4614-6666-6_4 CrossRefGoogle Scholar
  15. 15.
    Figueroa-García, J.C., Chalco-Cano, Y., Román-Flores, H.: Distance measures for interval type-2 fuzzy numbers. Discrete Appl. Math. 197, 93–102 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Figueroa-García, J.C., Hernández-Pérez, G.J.: On the computation of the distance between interval type-2 fuzzy numbers using a-cuts. In: Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS), vol. 1, pp. 1–6. IEEE (2014)Google Scholar
  17. 17.
    Figueroa-García, J.C., Hernández, G.: A transportation model with interval type-2 fuzzy demands and supplies. In: Huang, D.-S., Jiang, C., Bevilacqua, V., Figueroa, J.C. (eds.) ICIC 2012. LNCS, vol. 7389, pp. 610–617. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31588-6_78 CrossRefGoogle Scholar
  18. 18.
    Wu, D., Mendel, J.M.: A comparative study of ranking methods, similarity measures and uncertainty measures for interval type-2 fuzzy sets. Inf. Sci. 179, 1169–1192 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Wu, D., Mendel, J.M.: Uncertainty measures for Interval type-2 fuzzy sets. Inf. Sci. 177, 5378–5393 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice Hall, Upper Saddle River (2001)zbMATHGoogle Scholar
  21. 21.
    Mendel, J.M., Wu, D.: Perceptual Computing: Aiding People in Making Subjective Judgments. Wiley, Hoboken (2010)CrossRefGoogle Scholar
  22. 22.
    Mendel, J.M.: Advances in type-2 fuzzy sets and systems. Inf. Sci. 177, 84–110 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Bustince, H.: Interval-valued fuzzy sets in soft computing. Int. J. Comput. Intell. Syst. 3, 215–222 (2010)CrossRefGoogle Scholar
  24. 24.
    Bustince, H., Barrenechea, E., Pagola, M., Fernandez, J.: Interval-valued fuzzy sets constructed from matrices: application to edge detection. Fuzzy Sets Syst. 60, 1819–1840 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Türksen, I.: Interval-valued fuzzy sets and compensatory AND. Fuzzy Sets Syst. 51, 295–307 (1992)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Burillo, P., Bustince, H.: Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. Fuzzy Sets Syst. 78, 305–316 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Melgarejo, M.A.: A fast recursive method to compute the generalized centroid of an interval type-2 fuzzy set. In: Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS), pp. 190–194. IEEE (2007)Google Scholar
  28. 28.
    Duran, K., Bernal, H., Melgarejo, M.: Improved iterative algorithm for computing the generalized centroid of an interval type-2 fuzzy set. In: 2008 Annual Meeting of the IEEE North American Fuzzy Information Processing Society (NAFIPS) (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Juan Carlos Figueroa-García
    • 1
    Email author
  • Germán Jairo Hernández-Pérez
    • 2
  • Yurilev Chalco-Cano
    • 3
  1. 1.Universidad Distrital Francisco José de CaldasBogotáColombia
  2. 2.Universidad Nacional de ColombiaBogotáColombia
  3. 3.Instituto de Alta Investigación, Universidad de TarapacáAricaChile

Personalised recommendations