Skip to main content

Penning Trap Physics

  • Chapter
  • First Online:
The Electron Mass and Calcium Isotope Shifts

Part of the book series: Springer Theses ((Springer Theses))

  • 578 Accesses

Abstract

Our high-precision measurements of the Larmor-to-cyclotron frequency ratios \(\varGamma \) require single trapped, cooled ions in close-to-ideal vacuum. State-of-the-art trapping and high-precision measurement techniques with stable ions will be introduced in this chapter. These techniques allow us to work with the same single ion for the complete measurement period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For completion, we also mention the trapping of electrically charged particles in storage rings, which require usually circumferences of at least a few meters up to 27 km.

  2. 2.

    In a Penning trap, different numbers and even different species of charged particles can be confined at the same time. In this thesis, we focus on single trapped ions.

  3. 3.

    Frequencies are quoted sometimes as ordinary frequencies \(\nu \) or angular frequencies \(\omega =2\pi \nu \).

  4. 4.

    In the following, the cyclotron frequency, \(\omega _c,\) is called the free cyclotron frequency in contrast to the modified cyclotron frequency \(\omega _+\). This terminology is widely used in the Penning trap community.

  5. 5.

    The present electrodes have a machining precision of \(\pm 10 \,\upmu \!\, \text {m},\) nowadays \(\pm 5 \,\upmu \!\, \text {m}\) are possible.

  6. 6.

    In dB units the FWHM of a power ratio corresponds to the \(10\cdot \log _{10}(0.5) \approx -3\text {dB}\)-width.

  7. 7.

    For an amplitude ratio: \(1\, \text {dBVrms}=20\log _{10}(1\, \text {Vrms})\).

  8. 8.

    The cooling time constant \(\tau \) is defined in a way that the axial energy (\(\propto z_0^2\)) has a damping of \(\propto \exp {-t/\tau }\).

  9. 9.

    Only thermalized ions of equal species, which oscillate in common mode, contribute to the dip signal.

  10. 10.

    In this context excitation can mean both, real excitation but also deexciation/cooling of an eigenmotion.

  11. 11.

    Creation operator: \(a_ n^\dagger \left| n \right\rangle =\sqrt{n+1} \left| n+1 \right\rangle \) and annihilation operator: \(a_ n \left| n \right\rangle = \sqrt{n} \left| n-1 \right\rangle \).

  12. 12.

    A mode is denoted as cold, when it has been thermalized by the axial resonator.

  13. 13.

    One level: Motional energy is maximal in the axial mode, minimal in the modified cyclotron mode. Other level: Motional energy is minimal in the axial mode, maximal in the modified cyclotron mode.

  14. 14.

    z(t) is modulated with the frequency \(\varOmega _0/2\), since the energy, \(E_z\propto z(t)^2\), oscillates with \(\varOmega _0\).

  15. 15.

    In this thesis, phases will always be denoted in degree and not in radian.

  16. 16.

    Here, I neglect the complete preparation time, which comprises the time of the double-dip measurement, the six \(10\, \text {ms}\)-PnA cycles, the phase unwrapping PnA-cycles (1 s and 2 s) and especially the cooling time of the modes between these cycles.

  17. 17.

    For a coherent spin-flip drive at \(\nu _L\approx 105\, \text {GHz}\) and a Rabi frequency of \(0.1\, \text {Hz}\) the relative width of the Rabi resonance is: \((0.1\, \text {Hz}/105\, \text {GHz})\approx 1\cdot 10^{-12},\) see also Sect. 4.5.

  18. 18.

    \(T_+\approx 3000\, \text {K}\) corresponds to a typical modified cyclotron radius of \(r_+=14\,\upmu \! \, \text {m}\) during the PnA phase evolution time.

  19. 19.

    Calculated by a COMSOL simulation.

References

  1. Earnshaw, S.: On the Nature of the Molecular Forces Which Regulate the Constitution of the Luminiferous Ether (1842)

    Google Scholar 

  2. Paul, W., Steinwedel, H.: Ein neues Massenspektrometer ohne Magnetfeld. Z. Naturforsch. A (1953), vol. 8a: pp. 448–450

    Google Scholar 

  3. Paul, W.: Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 62(3), 531–540 (1990)

    Google Scholar 

  4. Dehmelt, H.G.: The Nobel Prize in Physics (1989)

    Google Scholar 

  5. Penning, F.M.: Die Glimmentladung bei niedrigem Druck zwischen koaxialen Zylindern in einem axialen Magnetfeld. Physica III 9, 873 (1936)

    Article  ADS  Google Scholar 

  6. Pierce, J.R.: Theory and Design of Electron Beams’, ed. by Nostrand, Van. New York (1949)

    Google Scholar 

  7. Verdu, J.L.: Ultrapräzise Messung des elektronischen g-faktors in wasserstoffahnlichem Sauerstoff. Doktorarbeit (2003)

    Google Scholar 

  8. Brown, L.S., Gabrielse, G.: Geonium theory: Physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58(1), 233–311 (1986)

    Google Scholar 

  9. Sturm, S.: The g-factor of the electron bound in \({}^{28}{\rm Si}^{13+}\): The most stringent test of bound-state quantum electrodynamics. Doktorarbeit (2012)

    Google Scholar 

  10. Ketter, J., Eronen, T., Höcker, M., Streubel, S., Blaum, K.: Firstorder perturbative calculation of the frequency-shifts caused by static cylindricallysymmetric electric and magnetic imperfections of a Penning trap. Int. J. Mass 358, 1–16 (2014)

    Article  Google Scholar 

  11. Brown, L.S., Gabrielse, G.: Precision spectroscopy of a charged particle in an imperfect Penning trap. Phys. Rev. A 25(4), 2423–2425 (1986)

    Google Scholar 

  12. Gabrielse, G., Haarsma, L., Rolston, S.L.: Open-endcap penning traps for high precision experiments. Int. J. Mass Spectrom. Ion Proc., 88, 319–332 (1989)

    Google Scholar 

  13. Ramo, S.: Currents induced by electron motion. Proc. IEEE 27(9), 584–585 (1939)

    Google Scholar 

  14. Stahl, S.K.-H.: Aufbau eines Experimentes zur Bestimmung elektronischer g-Faktoren einzelner wasserstoffähnlicher Ionen. Doktorarbeit (1998)

    Google Scholar 

  15. Johnson, J.B.: Thermal agitation of electricity in conductors. Phys. Rev. 32(1), 97–109 (1928)

    Google Scholar 

  16. Nyquist, H.: Thermal agitation of electric charge in conductors. Phys. Rev. 32(1), 110–113 (1928)

    Google Scholar 

  17. Wineland, D.J., Dehmelt, H.G.: Principles of the stored ion calorimeter. J. Appl. Phys. 46(2), 919–930 (1975)

    Article  ADS  Google Scholar 

  18. Häffner, H.: Präzisionsmessung des magnetischen Moments des Elektrons in wasserstoffähnlichem Kohlenstoff. Doktorarbeit (2000)

    Google Scholar 

  19. Van Dyck, R.S., Moore, F.L., Farnham, D.L., Schwinberg, P.B.: Number dependency in the compensated Penning trap. Phys. Rev. A 40(11), 6308–6313 (1989)

    Google Scholar 

  20. Sturm, S., Wagner, A., Kretzschmar, M.M., Quint, W., Werth, G., Blaum, K.: \(g\)-factor measurement of hydrogenlike \({}^{28}{\rm Si}^{13+}\) as a challenge to QED calculations. Phys. Rev. A 87(3), 030501 (2013)

    Google Scholar 

  21. Köhler, F., Sturm, S., Kracke, A., Werth, G., Quint, W., Blaum, K.: The electron mass from \(g\)-factor measurements on hydrogen-like carbon \({}^{12}{\rm C}^{5+}\)’. J. Phys. B: At. Mol. Opt. Phys. 48(14), 144032 (2015)

    Google Scholar 

  22. COMSOL, Multiphysics, version 4.2 a. COMSOL, Inc

    Google Scholar 

  23. Sturm, S., Wagner, A., Schabinger, B., Blaum, K.: Phase-sensitive cyclotron frequency measurements at ultralow energies. Phys. Rev. Lett. 107(14), 143003 (2011)

    Google Scholar 

  24. Cornell, E.A., Weisskoff, R.M., Boyce, K.R., Pritchard, D.E.: Mode coupling in a Penning trap: \(\pi \) pulses and a classical avoided crossing. Phys. Rev. A 41(1), 312–315 (1990)

    Google Scholar 

  25. Kretzschmar, M.: A quantum mechanical model of Rabi oscillations between two interacting harmonic oscillator modes and the interconversion of modes in a Penning trap. AIP Conf. Proc. 457(1) (1999)

    Google Scholar 

  26. Ketter, J., Eronen, T., Höcker, M., Schuh, M., Streubel, S., Blaum, K.: Classical calculation of relativistic frequency-shifts in an ideal Penning trap. Int. J. Mass 361, 34–40 (2014)

    Article  Google Scholar 

  27. Castiglioni, P.: Zero Padding (2014)

    Google Scholar 

  28. Dehmelt, H.: Continuous Stern-Gerlach effect: principle and idealized apparatus 83(8), 2291–2294 (1986)

    Google Scholar 

  29. Wagner, A.: The g-factor of the valence electron bound in lithiumlike silicon \({}^{28}{\rm Si}^{11+}\): the most stringent test of relativistic many-electron calculations in a magnetic field. Doktorarbeit (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Köhler-Langes .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Köhler-Langes, F. (2017). Penning Trap Physics. In: The Electron Mass and Calcium Isotope Shifts. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-50877-1_3

Download citation

Publish with us

Policies and ethics