Skip to main content

The g-Factor - Exploring Atomic Structure and Fundamental Constants

  • Chapter
  • First Online:
  • 565 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Slightly more than 100 years ago Ernest Rutherford in 1911 and Niels Bohr in 1913 made the first fundamental steps to explain the atomic structure of nature (Rutherford, Philos Mag Ser 6 21(125):669–688, 1911, [1]; Bohr, Philos Mag Ser 6 26(151):1–25, 1913, [2]). Since then, enormous efforts have been undertaken, such that the SM nowadays is able to predict properties of elementary particles up to the thirteens digit (Aoyama et al. Phys Rev Lett 109(11):111807, 2012, [3]; Hanneke, et al., Phys Rev Lett 100(12):120801, 2008, [4]; Bouchendira et al., Phys Rev Lett 106(8):080801, 2011, [5]). In the following chapter I will illuminate the present understanding of the fundamental electromagnetic dynamics in atomic structure. The main focus will be set on the present workhorse of the underlying theory, the so-called bound-state quantum electrodynamics (BS-QED): the bound-electron g-factor.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Relative uncertainties of the g-factor of the free electron: \((\delta g/g)_{\text {theo}}=0.8\cdot 10^{-12}\) and \((\delta g/g)_{\text {exp}}=0.3\cdot 10^{-12},\) see also Sect. 2.2.

  2. 2.

    In the following a homogeneous magnetic field will always point in z-direction.

  3. 3.

    Even stronger fields can be reached by muonic ions or even more exotic atomic systems. However, the measurement time is strongly limited by their short lifetimes.

  4. 4.

    Here, the relativistic expectation value of \(1/r^2\) has been used from [15]. For nuclear charges larger than 30, such a relativistic calculation is essential, e.g. for uranium \((Z=92)\) the mean electric field derived by the non-relativistic Schrödinger equation is a factor of 2.8 smaller than the relativistic calculation. The mean electric field of a \(1s_{1/2}\) electron is:

    figure a
  5. 5.

    The following explanation roughly outlines the 1 / Z parameter of the perturbative expansion of the interelectronic interaction: In general, the parameter of the perturbative expansion is given by the matrix-element of the perturbation operator over the typical energy difference. The matrix-element of the Coulomb repulsion scales with \(\alpha /<r_{12}>,\) where \(<r_{12}>\) (distance between two electrons) scales inversely with \((\alpha Z)^{-1}.\) The energy difference typically scales with \((\alpha Z)^2.\)

  6. 6.

    In this paragraph I quote the theoretical g-factors, which have been published together with the measurements at that time. Most calculations improved in the last years.

  7. 7.

    In principle, also nuclear polarizations contribute to isotope shifts. However, at the present level of precision this contribution can be neglected.

  8. 8.

    Binding energies from NIST table [70]: \(E_{{\text {bind}}}=18804(4)-11756.4449(80)=6747.5(4.0)\,{{\text {eV}}}\) and \(1{{\text {u}}}=931 494 061 (21){{\text {eV/c}}}^2.\)

  9. 9.

    In general the binding energies of different isotopes varies due to their different masses (mass shift) and their different charge distributions (field shift). For calcium the field shift dominates, which scales with \(Z^5\) to \(Z^6\) [77]. Since the binding energy of a 1s electron in uranium differs by 200 eV between a hypothetical point-charge distribution and the measured charge distribution [94], the field shift for 1s electrons in calcium isotopes should be smaller than \(\varDelta m/m=200\,{\text {eV}}/92^5\cdot 20^5/40\,{\text {GeV}}=2.6\cdot 10^{-12}\). For 2s electrons this effect is even smaller.

References

  1. Rutherford, E.: LXXIX. The scattering of \(\alpha \) and \(\beta \) particles by matter and the structure of the atom. Philos. Mag. Ser. 6 21(125), 669–688 (1911)

    Article  MATH  Google Scholar 

  2. Bohr, N.: I. On the constitution of atoms and molecules. Philos. Mag. Ser. 6 26(151), 1–25 (1913)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aoyama, T., Hayakawa, M., Kinoshita, T., Nio, M.: Tenth-order QED contribution to the electron \(g\) - 2 and an improved value of the fine structure constant. Phys. Rev. Lett. 109(11), 111807 (2012)

    Article  ADS  Google Scholar 

  4. Hanneke, D., Fogwell, S., Gabrielse, G.: New measurement of the electron magnetic moment and the fine structure constant. Phys. Rev. Lett. 100(12), 120801 (2008)

    Article  ADS  Google Scholar 

  5. Bouchendira, R., Cladé, P., Guellati-Khélifa, S., Nez, F., Biraben, F.: New determination of the fine structure constant and test of the quantum electrodynamics. Phys. Rev. Lett. 106(8), 080801 (2011)

    Article  ADS  Google Scholar 

  6. Gerlach, W., Stern, O.: Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld. German. Z. Phys. 9(1), 349–352 (1922)

    Article  ADS  Google Scholar 

  7. Uhlenbeck, G.E., Goudsmit, S.: Ersetzung der Hypothese vom unmechanischen Zwang durch eine Forderung bezuglich des inneren Verhaltens jedes einzelnen Elektrons. German. Die Naturwissenschaften 13(47), 953–954 (1925)

    Article  ADS  MATH  Google Scholar 

  8. Landé, A.: Interview of Dr. A. Lande by T.S. Kuhn and J. Heilbron in Berkeley on March 6, : Niels Bohr Library and Archives, p. 1962. MD USA, American Institute of Physics, College Park (1962)

    Google Scholar 

  9. Lamb, W.E., Retherford, R.C.: Fine structure of the hydrogen atom by a microwave method. Phys. Rev. 72(3), 241–243 (1947)

    Article  ADS  Google Scholar 

  10. Nafe, J.E., Nelson, E.B., Rabi, I.I.: The hyperfine structure of atomic hydrogen and deuterium. Phys. Rev. 71(12), 914–915 (1947)

    Article  ADS  Google Scholar 

  11. Nagle, D.E., Julian, R.S., Zacharias, J.R.: The hyperfine structure of atomic hydrogen and deuterium. Phys. Rev. 72(10), 971 (1947)

    Article  ADS  Google Scholar 

  12. Kusch, P., Foley, H.M.: Precision measurement of the ratio of the atomic ‘\(g\) values’ in the \(^{2}P_{3/2}\) and \(^{2}P_{1/2}\) states of gallium. Phys. Rev. 72(12), 1256–1257 (1947)

    Article  ADS  Google Scholar 

  13. Foley, H.M., Kusch, P.: On the intrinsic moment of the electron. Phys. Rev. 73(4), 412 (1948)

    Article  ADS  Google Scholar 

  14. Schwinger, J.: On quantum-electrodynamics and the magnetic moment of the electron. Phys. Rev. 73(4), 416–417 (1948)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Suslov, S.K.: Expectation values in relativistic Coulomb problems. J. Phys. B 42(18), 185003 (2009)

    Article  ADS  Google Scholar 

  16. Yanovsky, V., Chvykov, V., Kalinchenko, G., Rousseau, P., Planchon, T., Matsuoka, T., Maksimchuk, A., Nees, J., Cheriaux, G., Mourou, G., Krushelnick, K.: Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate. Opt. Express 16(3), 2109–2114 (2008)

    Article  ADS  Google Scholar 

  17. Schwinger, J.: On gauge invariance and vacuum polarization. Phys. Rev. 82(5), 664–679 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Sauter, F.: Uber das Verhalten eines Elektrons im homogenen elektrischen Feld nach der relativistischen Theorie Diracs. German. Z. Phys. 69(11–12), 742–764 (1931)

    Article  ADS  MATH  Google Scholar 

  19. Heisenberg, W., Euler, H.: Folgerungen aus der Diracschen Theorie des Positrons. German. Z. Phys. 98(11–12), 714–732 (1936)

    Google Scholar 

  20. Beier, T.: The \(g_{j}\) factor of a bound electron and the hyperfine structure splitting in hydrogenlike ions. Phys. Rep. 39(2–3), 79–213 (2000)

    Article  ADS  Google Scholar 

  21. Furry, W.H.: On bound states and scattering in positron theory. Phys. Rev. 81(1), 115–124 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Zatorski, J., Harman, Z., Keitel, C.H.: Private communication (2015)

    Google Scholar 

  23. Volotka, A.V.: Private communication (2015)

    Google Scholar 

  24. Breit, G.: The magnetic moment of the electron. Nature 122, 649 (1928)

    Article  ADS  Google Scholar 

  25. Quint, W., Vogel, M. (eds.): Fundamental Physics in Particle Traps. Springer, Heidelberg (2014)

    Google Scholar 

  26. Blundell, S.A., Cheng, K.T., Sapirstein, J.: Radiative corrections in atomic physics in the presence of perturbing potentials. Phys. Rev. A 55(3), 1857–1865 (1997)

    Article  ADS  Google Scholar 

  27. Yerokhin, V.A., Indelicato, P., Shabaev, V.M.: Evaluation of the selfenergy correction to the \(g\) factor of \(S\) states in H-like ions’. Phys. Rev. A 69(5), 052503 (2004)

    Google Scholar 

  28. Beier, T., Lindgren, I., Persson, H., Salomonson, S., Sunnergren, P., Häffner, H., Hermanspahn, N.: \(g_{j}\) factor of an electron bound in a hydrogenlike ion. Phys. Rev. A 62(3), 032510 (2000)

    Article  ADS  Google Scholar 

  29. Pachucki, K., Czarnecki, A., Jentschura, U.D., Yerokhin, V.A.: Complete two-loop correction to the bound-electron \(g\) factor. Phys. Rev. A 72(2), 022108 (2005)

    Article  ADS  Google Scholar 

  30. Bohr, A., Weisskopf, V.F.: The influence of nuclear structure on the hyperfine structure of heavy elements. Phys. Rev. 77(1), 94–98 (1950)

    Article  ADS  MATH  Google Scholar 

  31. Glazov, D.A., Shabaev, V.M.: Finite nuclear size correction to the boundelectron g factor in a hydrogenlike atom. Phys. Lett. A 297(5.6), 408–411 (2002)

    Article  ADS  Google Scholar 

  32. Sturm, S., Wagner, A., Schabinger, B., Zatorski, J., Harman, Z., Quint, W., Werth, G., Keitel, C.H., Blaum, K.: \(g\) factor of hydrogenlike \(^{28}{\rm Si}^{13+}\). Phys. Rev. Lett. 107(2), 023002 (2011)

    Article  ADS  Google Scholar 

  33. Zatorski, J., Oreshkina, N.S., Keitel, C.H., Harman, Z.: Nuclear shape effect on the \(g\) factor of hydrogenlike ions. Phys. Rev. Lett. 108(6), 063005 (2012)

    Article  ADS  Google Scholar 

  34. Shabaev, V.M.: QED theory of the nuclear recoil effect on the atomic \(g\) factor. Phys. Rev. A 64, 052104 (2001)

    Google Scholar 

  35. Nefiodov, A.V., Plunien, G., Soff, G.: Nuclear-polarization correction to the bound-electron \(g\) factor in heavy hydrogenlike ions. Phys. Rev. Lett. 89(8), 081802 (2002)

    Google Scholar 

  36. Volotka, A.V., Plunien, G.: Nuclear polarization study: new frontiers for tests of qed in heavy highly charged ions. Phys. Rev. Lett. 113(2), 023002 (2014)

    Article  ADS  Google Scholar 

  37. Shabaev, V.M., Glazov, D.A., Shabaeva, M.B., Yerokhin, V.A., Plunien, G., Soff, G.: \(g\) factor of high-Z lithiumlike ions. Phys. Rev. A 65(6), 062104 (2002)

    Article  ADS  Google Scholar 

  38. Volotka, A.V., Glazov, D.A., Shabaev, V.M., Tupitsyn, I.I., Plunien, G.: Many-electron QED corrections to the \(g\) factor of lithiumlike ions. Phys. Rev. Lett. 112(25), 253004 (2014)

    Article  ADS  Google Scholar 

  39. von Lindenfels, D., Wiesel, M., Glazov, D.A., Volotka, A.V., Sokolov, M.M., Shabaev, V.M., Plunien, G., Quint, W., Birkl, G., Martin, A., Vogel, M.: Experimental access to higher-order Zeeman effects by precision spectroscopy of highly charged ions in a Penning trap. Phys. Rev. A 87(2), 023412 (2013)

    Article  ADS  Google Scholar 

  40. Glazov, D.A.: Private communication (2015)

    Google Scholar 

  41. Häffner, H., Beier, T., Hermanspahn, N., Kluge, H.-J., Quint, W., Stahl, S., Verdú, J., Werth, G.: High-accuracy measurement of the magnetic moment anomaly of the electron bound in hydrogenlike carbon. Phys. Rev. Lett. 85(25), 5308–5311 (2000)

    Article  ADS  Google Scholar 

  42. Verdú, J., Djekić, S., Stahl, S., Valenzuela, T., Vogel, M., Werth, G., Beier, T., Kluge, H.-J., Quint, W.: Electronic \(g\) factor of hydrogenlike oxygen \(^{16}{\rm O}^{7+}\). Phys. Rev. Lett. 92(9), 093002 (2004)

    Article  ADS  Google Scholar 

  43. Schabinger, B., Sturm, S., Wagner, A., Alonso, J., Quint, W., Werth, G., Blaum, K.: Experimental g factor of hydrogenlike silicon-28. English EPJ D 66(3), 71 (2012)

    Google Scholar 

  44. Sturm, S., Wagner, A., Schabinger, B., Blaum, K.: Phase-sensitive cyclotron frequency measurements at ultralow energies. Phys. Rev. Lett. 107(14), 143003 (2011)

    Article  ADS  Google Scholar 

  45. Wagner, A., Sturm, S., Köhler, F., Glazov, D.A., Volotka, A.V., Plunien, G., Quint, W., Werth, G., Shabaev, V.M., Blaum, K.: \(g\) factor of lithiumlike silicon \(^{28}{\rm Si}^{11+}\). Phys. Rev. Lett. 110(3), 033003 (2013)

    Article  ADS  Google Scholar 

  46. Thomson, J.J.: XL. Cathode rays. Philos. Mag. Ser. 5 44(269), 293–316 (1897)

    Article  Google Scholar 

  47. Thomson, J.J.: Nobel Lecture: Carriers of Negative Electricity. http://Nobelprize.org. Nobel Media AB 2014. Web. 6 Feb 2015 (1906)

  48. Gabrielse, G., Hanneke, D., Kinoshita, T., Nio, M., Odom, B.: New determination of the fine structure constant from the electron \(g\) value and QED. Phys. Rev. Lett. 97(3), 030802 (2006)

    Article  ADS  Google Scholar 

  49. Pospelov, M., Ritz, A.: Electric dipole moments as probes of new physics. Ann. Phys. 318(1), 119–169 (2005). Special Issue

    Google Scholar 

  50. The ACME Collaboration et al.: Order of magnitude smaller limit on the electric dipole moment of the electron. Science 343(6168), 269–272 (2014)

    Google Scholar 

  51. Mohr, P.J., Taylor, B.N., Newell, D.B.: CODATA recommended values of the fundamental physical constants: 2010*. Rev. Mod. Phys. 84(4), 1527–1605 (2012)

    Article  ADS  Google Scholar 

  52. Mount, B.J., Redshaw, M., Myers, E.G.: Atomic masses of \(^{6}{\rm Li}\), \(^{23}{\rm Na}\), \(^{39,41}{\rm K}\), \(^{85,87}{\rm Rb}\) and \(^{133}{\rm Cs}\). Phys. Rev. A 82(4), 042513 (2010)

    Article  ADS  Google Scholar 

  53. Bennett, G.W., et al.: Final report of the E821 muon anomalous magnetic moment measurement at BNL’. Phys. Rev. D 73(7), 072003 (2006)

    Article  ADS  Google Scholar 

  54. Davier, M., Hoecker, A., Malaescu, B., Zhang, Z.: Reevaluation of the hadronic contributions to the muon \(g\)-2 and to \(\alpha (M_{Z}^{2})\). Eur. Phys. J. C 71(1), 1515 (2011)

    Article  ADS  Google Scholar 

  55. Gärtner, G., Klempt, E.: A direct determination of the proton-electron mass ratio. English Z. Phys. A 287(1), 1–6 (1978)

    Article  ADS  Google Scholar 

  56. Gräff, G., Kalinowsky, H., Traut, J.: A direct determination of the proton electron mass ratio. English Z. Phys. A 297(1), 35–39 (1980)

    Article  ADS  Google Scholar 

  57. Van Dyck, R.S., Schwinberg, P.B.: Preliminary proton/electron mass ratio using a compensated quadring penning trap. Phys. Rev. Lett. 47(6), 395–398 (1981)

    Article  ADS  Google Scholar 

  58. Van Dyck, R.S., Moore, F.L., Farnham, D.L., Schwinberg, P.B.: New measurement of the proton-electron mass ratio. Int. J. Mass Spectrom. Ion Proc. 66(3), 327–337 (1985)

    Article  ADS  Google Scholar 

  59. Farnham, D.L., Van Dyck, R.S., Schwinberg, P.B.: Determination of the electron’s atomic mass and the proton/electron mass ratio via penning trap mass spectroscopy. Phys. Rev. Lett. 75(20), 3598–3601 (1995)

    Article  ADS  Google Scholar 

  60. Wineland, D.J., Bollinger, J.J., Itano, W.M.: Laser-fluorescence mass spectroscopy. Phys. Rev. Lett. 50(9), 628–631 (1983)

    Article  ADS  Google Scholar 

  61. Gabrielse, G., Fei, X., Orozco, L.A., Tjoelker, R.L., Haas, J., Kalinowsky, H., Trainor, T.A., Kells, W.: Thousandfold improvement in the measured antiproton mass. Phys. Rev. Lett. 65(11), 1317–1320 (1990)

    Article  ADS  Google Scholar 

  62. Hori, M., Sótér, A., Barna, D., Dax, A., Hayano, R., Friedreich, S., Juhasz, B., Pask, T., Widmann, E., Horvath, D., Venturelli, L., Zurlo, N.: Two-photon laser spectroscopy of antiprotonic helium and the antiproton-to-electron mass ratio. Nature 474, 484–488 (2011)

    Article  Google Scholar 

  63. Sturm, S., Köhler, F., Zatorski, J., Wagner, A., Harman, Z., Werth, G., Quint, W., Keitel, C.H., Blaum, K.: High-precision measurement of the atomic mass of the electron. Nature 506, 467–470 (2014)

    Google Scholar 

  64. Cohen, E.R., Taylor, B.N.: The 1973 least-squares adjustment of the fundamental constants. J. Phys. Chem. Ref. Data 2(4), 663–734 (1973)

    Google Scholar 

  65. Cohen, E.R., Taylor, B.N.: The 1986 CODATA recommended values of the fundamental physical constants. J. Phys. Chem. Ref. Data 17(4), 1795–1803 (1988)

    Article  ADS  Google Scholar 

  66. Mohr, P.J., Taylor, B.N.: CODATA recommended values of the fundamental physical constants: 1998. Rev. Mod. Phys. 72(2), 351–495 (2000)

    Article  ADS  MATH  Google Scholar 

  67. Mohr, P.J., Taylor, B.N.: CODATA recommended values of the fundamental physical constants: 2002*. Rev. Mod. Phys. 77(1), 1–107 (2005)

    Article  ADS  Google Scholar 

  68. Mohr, P.J., Taylor, B.N., Newell, D.B.: CODATA recommended values of the fundamental physical constants: 2006*. Rev. Mod. Phys. 80(2), 633–730 (2008)

    Article  ADS  Google Scholar 

  69. Beier, T., Häffner, H., Hermanspahn, N., Karshenboim, S.G., Kluge, H.-J., Quint, W., Stahl, S., Verdú, J., Werth, G.: New determination of the electron’s mass. Phys. Rev. Lett. 88(1), 011603 (2001)

    Article  ADS  Google Scholar 

  70. Kramida, A., Ralchenko, Yu., Reader, J., and NIST ASD Team: NIST Atomic Spectra Database (ver. 5.2). http://physics.nist.gov/asd [26 January 2015]. National Institute of Standards and Technology, Gaithersburg, MD. (2014)

  71. Moore, C.E.: Tables of Spectra of Hydrogen, Carbon, Nitrogen, and Oxygen Atoms and Ions. CRC Press, Boca Raton (1993)

    Google Scholar 

  72. Biémont, E., Frémat, Y., Quinet, P.: Ionization potentials of atoms and ions from lithium to tin (Z=50). At. Data Nuclear Data Tables 71(1), 117–146 (1999)

    Article  ADS  Google Scholar 

  73. Ölme, A.: The spectrum of singly ionized boron B II. Physica Scripta 1(5–6), 256 (1970)

    Article  ADS  Google Scholar 

  74. Tunklev, M., Engström, L., Jupén, C., Kink, I.: The spectrum and term system of C IV. Phys. Scripta 55(6), 707 (1997)

    Article  ADS  Google Scholar 

  75. Drake, G.W.F.: Theoretical energies for the n=1 and 2 states of the helium isoelectronic sequence up to Z=100. Can. J. Phys. 66, 586–611 (1988)

    Article  ADS  Google Scholar 

  76. Klopper, W., Bachorz, R.A., Tew, D.P., Hattig, C.: Sub-meV accuracy in first-principles computations of the ionization potentials and electron affinities of the atoms H to Ne. Phys. Rev. A 81(2), 022503 (2010)

    Article  ADS  Google Scholar 

  77. Pálffy, A.: Nuclear effects in atomic transitions. Contemp. Phys. 51(6), 471–496 (2010)

    Article  ADS  Google Scholar 

  78. Orts, Soria, Harman, Z., Crespo Lopez-Urrutia, J.R., Artemyev, A.N., Bruhns, H., Gonzalez Martinez, A.J., Jentschura, U.D., Keitel, C.H., Lapierre, A., Mironov, V., Shabaev, V.M., Tawara, H., Tupitsyn, I.I., Ullrich, J., Volotka, A.V.: Exploring relativistic many-body recoil effects in highly charged ions. Phys. Rev. Lett. 97(10), 103002 (2006)

    Article  ADS  Google Scholar 

  79. Hughes, W.M., Robinson, H.G.: Determination of an isotope shift in the ratio of atomic \(g_{j}\) values of hydrogen and deuterium. Phys. Rev. Lett. 23(21), 1209–1212 (1969)

    Article  ADS  Google Scholar 

  80. Angeli, I., Marinova, K.P.: Table of experimental nuclear ground state charge radii: an update. At. Data Nuclear Tables 99(1), 69–95 (2013)

    Article  ADS  Google Scholar 

  81. Köhler, F., et al.: Isotope dependence of the Zeeman effect in lithium-like calcium. Nat. Commun. 7, 10246 (2016)

    Google Scholar 

  82. Grotch, H., Hegstrom, R.A.: Hydrogenic atoms in a magnetic field. Phys. Rev. A 4(1), 59–69 (1971)

    Article  ADS  Google Scholar 

  83. Close, F.E., Osborn, H.: Relativistic extension of the electromagnetic current for composite systems. Phys. Lett. B 34(5), 400–404 (1971)

    Article  ADS  Google Scholar 

  84. Pachucki, K.: Nuclear mass correction to the magnetic interaction of atomic systems. Phys. Rev. A 78(1), 012504 (2008)

    Article  ADS  Google Scholar 

  85. Eides, M.I., Martin, T.J.S.: Universal binding and recoil corrections to bound state \(g\) factors in hydrogenlike ions. Phys. Rev. Lett. 105(10), 100402 (2010)

    Article  ADS  Google Scholar 

  86. Zong-Chao, Y.: Calculations of magnetic moments for lithium-like ions. J. Phys. B 35(8), 1885 (2002)

    Article  ADS  Google Scholar 

  87. Block, M., et al.: Towards direct mass measurements of nobelium at SHIPTRAP. English EPJ D 45(1), 39–45 (2007)

    Google Scholar 

  88. Chaudhuri, A., Block, M., Eliseev, S., Ferrer, R., Herfurth, F., Martin, A., Marx, G., Mukherjee, M., Rauth, C., Schweikhard, L., Vorobjev, G.: Carbon-cluster mass calibration at SHIPTRAP. English. EPJ D 45(1), 47–53 (2007)

    Google Scholar 

  89. Savard, G., Becker, St., Bollen, G., Kluge, H.-J., Moore, R.B., Otto, Th., Schweikhard, L., Stolzenberg, H., Wiess, U.: A new cooling technique for heavy ions in a Penning trap’. Phys. Lett. A 158(5), 247–252 (1991)

    Google Scholar 

  90. Eliseev, S., Blaum, K., Block, M., Droese, C., Goncharov, M., Minaya Ramirez, E., Nesterenko, D.A., Novikov, Yu.N., Schweikhard, L.: Phase-imaging ion-cyclotron-resonance measurements for short-lived nuclides. Phys. Rev. Lett. 110(8), 082501 (2013)

    Google Scholar 

  91. Eliseev, S., Blaum, K., Block, M., Dörr, A., Droese, C., Eronen, T., Goncharov, M., Höcker, M., Ketter, J., Minaya Ramirez, E., Nesterenko, D.A., Novikov, Yu.N., Schweikhard, L.: A phase-imaging technique for cyclotronfrequency measurements. English Appl. Phys. B 114(1–2), 107–128 (2014)

    Google Scholar 

  92. Yurtsever, E., Elmaci, N.: Dissociation dynamics of small carbon clusters. English Tr. J. Chem. 21, 35–41 (1997)

    Google Scholar 

  93. Belau, L., Wheeler, S.E., Ticknor, B.W., Ahmed, M., Leone, S.R., Allen, W.D., Schaefer, H.F., Duncan, M.A.: Ionization thresholds of small carbon clusters: tunable VUV experiments and theory. J. Am. Chem. Soc. 129(33), 10229–10243 (2007)

    Article  Google Scholar 

  94. Beyer, H.F., Menzel, G., Liesen, D., Gallus, A., Bosch, F., Deslattes, R., Indelicato, P., Stöhlker, Th., Klepper, O., Moshammer, R., Nolden, F., Eickhoff, H., Franzke, B., Steck, M.: Measurement of the ground-state lambshift of hydrogenlike uranium at the electron cooler of the ESR. English Z. Phys. D 35(3), 169–175 (1995)

    Google Scholar 

  95. Nagy, Sz., Fritioff, T., Solders, A., Schuch, R., Bjorkhage, M., Bergström, I.: Precision mass measurements of \(^{40}{\rm Ca}^{17+}\) and \(^{40}{\rm Ca}^{19+}\) ions in a Penning trap. English. EPJ D 39(1), 1–4 (2006)

    Google Scholar 

  96. Audi, G., Wang, M., Wapstra, A.H., Kondev, F.G., MacCormick, M., Xu, X., Pfeiffer, B.: The Ame 2012 atomic mass evaluation’. Chin. Phys. C 36(12), 1603 (2012)

    Article  Google Scholar 

  97. Rodrigues, G.C., Indelicato, P., Santos, J.P., Patté, P., Parente, F.: Systematic calculation of total atomic energies of ground state configurations. At. Data Nuclear Data Tables 86(2), 117–233 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Köhler-Langes .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Köhler-Langes, F. (2017). The g-Factor - Exploring Atomic Structure and Fundamental Constants. In: The Electron Mass and Calcium Isotope Shifts. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-50877-1_2

Download citation

Publish with us

Policies and ethics