Skip to main content

Finite-Difference Time-Domain Simulation for Three-Dimensional Polarized Light Imaging

  • Conference paper
  • First Online:
Brain-Inspired Computing (BrainComp 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10087))

Included in the following conference series:

Abstract

Three-dimensional Polarized Light Imaging (3D-PLI) is a promising technique to reconstruct the nerve fiber architecture of human post-mortem brains from birefringence measurements of histological brain sections with micrometer resolution. To better understand how the reconstructed fiber orientations are related to the underlying fiber structure, numerical simulations are employed. Here, we present two complementary simulation approaches that reproduce the entire 3D-PLI analysis: First, we give a short review on a simulation approach that uses the Jones matrix calculus to model the birefringent myelin sheaths. Afterwards, we introduce a more sophisticated simulation tool: a 3D Maxwell solver based on a Finite-Difference Time-Domain algorithm that simulates the propagation of the electromagnetic light wave through the brain tissue. We demonstrate that the Maxwell solver is a valuable tool to better understand the interaction of polarized light with brain tissue and to enhance the accuracy of the fiber orientations extracted by 3D-PLI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The function \(\mathrm{atan2}(x,y)\) denotes the angle (in radians) between the positive x-axis and the point (xy). The angle is positive for \(y>0\) and negative for \(y<0\).

References

  1. Behrens, T.E.J., Sporns, O.: Human connectomics. Current Opin. Neurobiol. 22(1), 144–153 (2012). doi:10.1016/j.conb.2011.08.005

    Article  Google Scholar 

  2. Sporns, O., Tononi, G., Kötter, R.: The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1(4), 245–251 (2005). doi:10.1371/journal.pcbi.0010042

    Article  Google Scholar 

  3. Sporns, O.: The human connectome: linking structure and function in the human brain. In: Johansen-Berg, H., Behrens, T.E.J. (eds.) Diffusion MRI: From Quantitative Measurement to in vivo Neuroanatomy, pp. 309–332, 1st edn. Academic Press, Amsterdam (2009). doi:10.1371/journal.pcbi.0010042.

    Google Scholar 

  4. Axer, M., Amunts, K., Grässel, D., Palm, C., Dammers, J., Axer, H., Pietrzyk, U., Zilles, K.: A novel approach to the human connectome: Ultra-high resolution mapping of fiber tracts in the brain. NeuroImage 54(2), 1091–1101 (2011). doi:10.1016/j.neuroimage.2010.08.075

    Article  Google Scholar 

  5. Axer, M., Grässel, D., Kleiner, M., Dammers, J., Dickscheid, T., Reckfort, J., Hütz, T., Eiben, B., Pietrzyk, U., Zilles, K., Amunts, K.: High-resolution fiber tract reconstruction in the human brain by means of three-dimensional polarized light imaging. Frontiers Neuroinform. 5(34), 1–13 (2011). doi:10.3389/fninf.2011.00034

    Google Scholar 

  6. Göthlin, G.F.: Die doppelbrechenden Eigenschaften des Nervengewebes - ihre Ursachen und ihre biologischen Konsequenzen. Kungl. Svenska Vetenskapskakademiens Handlingar. 51(1), 1–91 (1913)

    Google Scholar 

  7. Bear, R.S.: The structure of the myelin sheath. Optical studies. Neurosci. Res. Program Bull. 9(4), 507–510 (1971)

    Google Scholar 

  8. Quarles, R.H., Macklin, W.B., Morell, P.: Myelin formation, structure and biochemistry. In: Siegel, G., Albers, R.W., Brady, S., Price, D. (eds.) Basic Neurochemistry: Molecular, Cellular and Medical Aspects, pp. 51–71, 7th edn. Elsevier Academic Press, Burlington (2006)

    Google Scholar 

  9. Jones, R.C.: A new calculus for the treatment of optical systems. J. Optical Soc. Am. 31, 488–503 (1941). doi:10.1364/JOSA.31.000488

    Article  MATH  Google Scholar 

  10. Jones, R.C.: A new calculus for the treatment of optical systems. iv. J. Optical Soc. Am. 32, 486–486 (1942). doi:10.1364/JOSA.31.000488

    Article  Google Scholar 

  11. Menzel, M., Michielsen, K., De Raedt, H., Reckfort, J., Amunts, K., Axer, M.: A Jones matrix formalism for simulating three-dimensional polarized light imaging of brain tissue. J. R. Soc. Interface 12, 20150734 (2015). doi:10.1098/rsif.2015.0734

    Article  Google Scholar 

  12. Glazer, A.M., Lewis, J.G., Kaminsky, W.: An automatic optical imaging system for birefringent media. Proc. R. Soc. A 452, 2751–2765 (1996). doi:10.1098/rspa.1996.0145

    Article  Google Scholar 

  13. Menzel, M., Dohmen, M., De Raedt, H., Michielsen, K., Amunts, K., Axer, M.: Simulation-based validation of the physical model in 3D polarized light imaging. Optics and the Life Sciences, OSA Technical Digest (online), JT3A.33 (2015) doi:10.1364/BODA.2015.JT3A.33

  14. Dohmen, M., Menzel, M., Wiese, H., Reckfort, J., Hanke, F., Pietrzyk, U., Zilles, K., Amunts, K., Axer, M.: Understanding fiber mixture by simulation in 3D Polarized Light Imaging. NeuroImage 111, 464–475 (2015). doi:10.1016/j.neuroimage.2015.02.020

    Article  Google Scholar 

  15. Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite- Difference Time-Domain Method, 3rd edn. Artech House, Boston (2005)

    MATH  Google Scholar 

  16. Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966). doi:10.1109/TAP.1966.1138693

    Article  MATH  Google Scholar 

  17. De Raedt, H.: Advances in unconditionally stable techniques. In: Taflove, A., Hagness, S.C. (eds.) Computational Electrodynamics: The Finite-Difference Time-Domain Method, Chap. 18, 3rd edn. Artech House, Boston (2005)

    Google Scholar 

  18. Stephan, M., Docter, J.: JUQUEEN: IBM Blue Gene/Q supercomputer system at the Jülich supercomputing centre. J. Large-Scale Res. Facil. 1, A1 (2015). doi:10.17815/jlsrf-1-18

    Article  Google Scholar 

  19. De Raedt, H., Michielsen, K.: Unconditionally stable perfectly matched layer boundary conditions. Physica Status Solidi (b) 244(10), 3497–3505 (2007). doi:10.1002/pssb.200743148

    Article  Google Scholar 

Download references

Acknowledgments

Our work has been supported by the Helmholtz Association portfolio theme ‘Supercomputing and Modeling for the Human Brain’, by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 604102 (Human Brain Project), and partially by the National Institutes of Health under grant agreement No. R01MH 092311.

We gratefully acknowledge the computing time granted by the JARA-HPC Vergabegremium and provided on the JARA-HPC Partition part of the supercomputer JUQUEEN [18] at Forschungszentrum Jülich.

We would like to thank M. Cremer, Ch. Schramm, and P. Nysten for the preparation of the histological brain sections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Menzel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Menzel, M., Axer, M., De Raedt, H., Michielsen, K. (2016). Finite-Difference Time-Domain Simulation for Three-Dimensional Polarized Light Imaging. In: Amunts, K., Grandinetti, L., Lippert, T., Petkov, N. (eds) Brain-Inspired Computing. BrainComp 2015. Lecture Notes in Computer Science(), vol 10087. Springer, Cham. https://doi.org/10.1007/978-3-319-50862-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50862-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50861-0

  • Online ISBN: 978-3-319-50862-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics