Skip to main content

Designing Workflows for the Reproducible Analysis of Electrophysiological Data

  • Conference paper
  • First Online:
Book cover Brain-Inspired Computing (BrainComp 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10087))

Included in the following conference series:

Abstract

The workflows that cover the experimental recording of neuronal data up to the publication of figures that illustrate neuroscientific analysis results are interwoven and complex. Unfortunately, current implementations of such workflows of electrophysiological research are far from being automatized, and software supporting such a goal is largely in development or missing. In consequence, the level of reproducibility of data analysis is poor compared to other scientific disciplines. Although the problem is well-known and leads to ineffective, unsustainable science, there is no solution in sight in terms of a complete, provenance-tracked workflow. Here, we outline principle challenges that complicate the design of workflows for electrophysiological research. We detail how existing tools can be integrated to form partial workflows which address some of the challenges. On the basis of a concrete workflow implementation we discuss open questions and urgently needed software components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.csn.fz-juelich.de/survey.

  2. 2.

    http://neuroshare.sourceforge.net/index.shtml.

  3. 3.

    https://crcns.org/NWB.

  4. 4.

    http://neuralensemble.org/neo.

  5. 5.

    https://github.com/INM-6/python-odmltables.

  6. 6.

    https://github.com/G-Node/nix.

  7. 7.

    http://neuralensemble.org/elephant.

  8. 8.

    https://github.com/NeuralEnsemble/NeuroTools.

  9. 9.

    https://pythonhosted.org/OpenElectrophy.

  10. 10.

    http://www.martinos.org/mne/stable/index.html.

  11. 11.

    http://martinos.org/mne/dev/auto_examples/io/plot_objects_from_arrays.html.

  12. 12.

    http://datalad.org.

  13. 13.

    http://www.vistrails.org.

  14. 14.

    http://pipeline.loni.ucla.edu.

  15. 15.

    https://www.unicore.eu.

  16. 16.

    http://neuralensemble.org/trac/sumatra.

  17. 17.

    https://crcns.org.

  18. 18.

    http://www.carmen.org.uk.

  19. 19.

    https://www.humanbrainproject.eu.

References

  1. Abeles, M.: Corticons: Neural Circuits of the Cerebral Cortex. Cambridge Univ Press, New York (1991)

    Book  Google Scholar 

  2. Abeles, M., Goldstein Jr., M.H.: Multispike train analysis. Proc. IEEE 65(5), 762–773 (1977)

    Article  Google Scholar 

  3. Arieli, A., Sterkin, A., Grinvald, A., Aertsen, A.D.: Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273(5283), 1868–1871 (1996)

    Article  Google Scholar 

  4. Badia, R., Davison, A., Denker, M., Giesler, A., Gosh, S., Goble, C., Grewe, J., Grün, S., Hatsopoulos, N., LeFranc, Y., Muller, J., Pröpper, R., Teeters, J., Wachtler, T., Weeks, M., Zehl, L.: Report: INCF Program on Standards for data sharing: new perspectives on workflows and data management for the analysis of electrophysiological data (2015). https://www.incf.org/about-us/history/incf-scientific-workshops

  5. Barlow, H.B.: Single units and sensation: a neuron doctrine for perceptual psychology? Perception 1(4), 371–394 (1972)

    Article  Google Scholar 

  6. Brown, E.N., Kass, R.E., Mitra, P.P.: Multiple neural spike train data analysis: state-of-the-art and future challenges. Nat. Neurosci. 7(5), 456–461 (2004)

    Article  Google Scholar 

  7. Buzsáki, G.: Large-scale recording of neuronal ensembles. Nat. Neurosci. 7(5), 446–451 (2004)

    Article  Google Scholar 

  8. Buzsáki, G., Anastassiou, C.A., Koch, C.: The origin of extracellular fields and currents — EEG, ECoG. LFP and spikes. Nat. Rev. Neurosci. 13(6), 407–420 (2012)

    Article  Google Scholar 

  9. Denker, M., Einevoll, E., Franke, F., Grün, S., Hagen, E., Kerr, J., Nawrot, M., Ness, T., Ritz, R., Smith, L., Wachtler, T., Wójcik, D.: Report: 1st INCF workshop on validation of analysis methods (2014). https://www.incf.org/about-us/history/incf-scientific-workshops

  10. Denker, M., Wiebelt, B., Fliegner, D., Diesmann, M., Morrison, A.: Practically trivial parallel data processing in a neuroscience laboratory. In: Grün, S., Rotter, S. (eds.) Analysis of Parallel Spike Trains. Springer Series in Computational Neuroscience, vol. 7, pp. 413–436. Springer, Heidelberg (2010)

    Google Scholar 

  11. Diesmann, M., Gewaltig, M.O., Aertsen, A.: Stable propagation of synchronous spiking in cortical neural networks. Nature 402(6761), 529–533 (1999)

    Article  Google Scholar 

  12. Einevoll, G.T., Franke, F., Hagen, E., Pouzat, C., Harris, K.D.: Towards reliable spike-train recordings from thousands of neurons with multielectrodes. Curr. Opin. Neurobiol. 22(1), 11–17 (2012)

    Article  Google Scholar 

  13. Frostig, R.D., Lieke, E.E., Ts’o, D.Y., Grinvald, A.: Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc. Natl. Acad. Sci. 87(16), 6082–6086 (1990)

    Article  Google Scholar 

  14. Garcia, S.: OpenElectrophy: an electrophysiological data and analysis sharing framework. Front. Neuroinf. 3, 14 (2009)

    Article  Google Scholar 

  15. Garcia, S., Guarino, D., Jaillet, F., Jennings, T., Pröpper, R., Rautenberg, P.L., Rodgers, C.C., Sobolev, A., Wachtler, T., Yger, P., Davison, A.P.: Neo: an object model for handling electrophysiology data in multiple formats. Front. Neuroinf. 8, 10 (2014)

    Article  Google Scholar 

  16. Georgopoulos, A.P., Kalaska, J.F., Caminiti, R., Massey, J.T.: On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J. Neurosci. 2(11), 1527–1537 (1982)

    Google Scholar 

  17. Gramfort, A.: MEG and EEG data analysis with MNE-Python. Front. Neurosci. 7, 267 (2013)

    Article  Google Scholar 

  18. Grewe, J., Wachtler, T., Benda, J.: A bottom-up approach to data annotation in neurophysiology. Front. Neuroinf. 5, 16 (2011)

    Article  Google Scholar 

  19. Grinvald, A., Anglister, L., Freeman, J.A., Hildesheim, R., Manker, A.: Real-time optical imaging of naturally evoked electrical activity in intact frog brain. Nature 308(5962), 848–850 (1984)

    Article  Google Scholar 

  20. Grün, S.: Data-driven significance estimation for precise spike correlation. J. Neurophysiol. 101(3), 1126–1140 (2009)

    Article  Google Scholar 

  21. Kerr, J.N.D., Denk, W.: Imaging in vivo: watching the brain in action. Nat. Rev. Neurosci. 9(3), 195–205 (2008)

    Article  Google Scholar 

  22. Logothetis, N.K., Wandell, B.A.: Interpreting the BOLD signal. Annu. Rev. Physiol. 66(1), 735–769 (2004)

    Article  Google Scholar 

  23. Mitzdorf, U.: Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol. Rev. 65(1), 37–100 (1985)

    Google Scholar 

  24. Peyrache, A., Benchenane, K., Khamassi, M., Wiener, S.I., Battaglia, F.P.: Principal component analysis of ensemble recordings reveals cell assemblies at high temporal resolution. J. Comput. Neurosci. 29(1–2), 309–325 (2010)

    Article  Google Scholar 

  25. Pröpper, R., Obermayer, K.: Spyke viewer: a flexible and extensible platform for electrophysiological data analysis. Front. Neuroinf. 7, 26 (2013)

    Article  Google Scholar 

  26. Prut, Y., Vaadia, E., Bergman, H., Haalman, I., Slovin, H., Abeles, M.: Spatiotemporal structure of cortical activity: properties and behavioral relevance. J. Neurophysiol. 79(6), 2857–2874 (1998)

    Google Scholar 

  27. Riehle, A., Grün, S., Diesmann, M., Aertsen, A.: Spike synchronization and rate modulation differentially involved in motor cortical function. Science 278(5345), 1950–1953 (1997)

    Article  Google Scholar 

  28. Schneidman, E., Berry, M.J., Segev, R., Bialek, W.: Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440(7087), 1007–1012 (2006)

    Article  Google Scholar 

  29. Shimazaki, H., Amari, S., Brown, E.N., Grün, S.: State-space analysis of time-varying higher-order spike correlation for multiple neural spike train data. PLoS Comput. Biol. 8(3), e1002385 (2012)

    Article  MathSciNet  Google Scholar 

  30. Shlens, J., Field, G.D., Gauthier, J.L., Grivich, M.I., Petrusca, D., Sher, A., Litke, A.M., Chichilnisky, E.J.: The structure of multi-neuron firing patterns in primate retina. J. Neurosci. 26(32), 8254–8266 (2006)

    Article  Google Scholar 

  31. Singer, W.: Neuronal synchrony: a versatile code for the definition of relations? Neuron 24(1), 49–65 (1999)

    Article  Google Scholar 

  32. Staude, B., Rotter, S., Grün, S.: CuBIC: cumulant based inference of higher-order correlations in massively parallel spike trains. J. Comput. Neurosci. 29(1–2), 327–350 (2010)

    Article  MathSciNet  Google Scholar 

  33. Stevenson, I.H., Kording, K.P.: How advances in neural recording affect data analysis. Nat. Neurosci. 14(2), 139–142 (2011)

    Article  Google Scholar 

  34. Stosiek, C., Garaschuk, O., Holthoff, K., Konnerth, A.: In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. 100(12), 7319–7324 (2003)

    Article  Google Scholar 

  35. Takahashi, K., Kim, S., Coleman, T.P., Brown, K.A., Suminski, A.J., Best, M.D., Hatsopoulos, N.G.: Large-scale spatiotemporal spike patterning consistent with wave propagation in motor cortex. Nat. Commun. 6, 7169 (2015)

    Article  Google Scholar 

  36. Teeters, J.L., Harris, K.D., Millman, K.J., Olshausen, B.A., Sommer, F.T.: Data sharing for computational neuroscience. Neuroinformatics 6(1), 47–55 (2008)

    Article  Google Scholar 

  37. Torre, E., Picado-Muiño, D., Denker, M., Borgelt, C., Grün, S.: Statistical evaluation of synchronous spike patterns extracted by frequent item set mining. Front. Comput. Neurosci. 7, 132 (2013)

    Article  Google Scholar 

  38. Velliste, M., Perel, S., Spalding, M.C., Whitford, A.S., Schwartz, A.B.: Cortical control of a prosthetic arm for self-feeding. Nature 453(7198), 1098–1101 (2008)

    Article  Google Scholar 

  39. Zehl, L., Jaillet, F., Stoewer, A., Grewe, J., Sobolev, A., Wachtler, T., Brochier, T., Riehle, A., Denker, M., Grün, S.: Handling metadata in a neurophysiology laboratory. Front. Neuroinform. 10, 26 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Helmholtz Portfolio Theme Supercomputing and Modeling for the Human Brain (SMHB), EU grant 604102 (Human Brain Project, HBP) and FP7-ICT-2009-6 (BrainScales), Priority Program 1665 of the DFG (DE 2175/1-1 and GR 1753/4-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Denker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Denker, M., Grün, S. (2016). Designing Workflows for the Reproducible Analysis of Electrophysiological Data. In: Amunts, K., Grandinetti, L., Lippert, T., Petkov, N. (eds) Brain-Inspired Computing. BrainComp 2015. Lecture Notes in Computer Science(), vol 10087. Springer, Cham. https://doi.org/10.1007/978-3-319-50862-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50862-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50861-0

  • Online ISBN: 978-3-319-50862-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics