Skip to main content

Workflows for Ultra-High Resolution 3D Models of the Human Brain on Massively Parallel Supercomputers

  • Conference paper
  • First Online:
  • 864 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10087))

Abstract

Human brain atlases [1] are indispensable tools to achieve a better understanding of the multilevel organization of the brain through integrating and analyzing data from different brains, sources, and modalities while considering the functionally relevant topography of the brain [4]. The spatial resolution of most of these electronic atlases is in the range of millimeters, which does not allow the integration of the information at the level of cortical layers, columns, microcircuits or cells. Therefore, we introduced in 2013 the first BigBrain data set with a resolution of 20 \(\upmu \)m isotropic. This data set allows to specify morphometric parameters of human brain organization, which serve as a “gold standard” for neuroimaging data obtained at a lower spatial resolution. It provides, in addition, an essential basis for realistic brain models concerning structural analysis and simulation [2]. For the generation of other, even higher-resolution data sets of the human brain, we developed an improved and more efficient data processing workflow employing high performance computing to 3D reconstruct histological data sets. To facilitate the analysis of intersubject variability on a microscopic level, the new processing framework was applied for reconstructing a second BigBrain data set with 7676 sections. Efficient data processing of a large amount of data sets with a complex nested reconstruction workflow using large number of compute nodes required optimized distributed processing workflows as well as parallel programming. A detailed documentation of the processing steps and the complex inter-dependencies of the data sets at each level of the multi-step reconstruction workflow was essential to enable transformations to images of the same histological sections obtained with even higher spatial resolution. We have addressed these challenges, and achieved efficient high throughput processing of thousands of images of histological sections in combination with sufficient flexibility, based on an effective, successive coarse-to-fine hierarchical processing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zilles, K., Amunts, K.: Centenary of Brodmann’s map - conception and fate. Nat. Rev. Neurosci. 11(2), 139–145 (2010)

    Article  Google Scholar 

  2. Amunts, K., Lepage, C., Borgeat, L., Mohlberg, H., Dickscheid, T., Rousseau, M., Bludau, S., Bazin, P., Lewis, L., Oros-Peusquens, A., Shah, N., Lippert, T., Zilles, K., Evans, A.C.: BigBrain: an ultrahigh-resolution 3D human brain model. Science 340, 1472–1475 (2013)

    Article  Google Scholar 

  3. Amunts, K., Bücker, O., Axer, M.: Towards a multiscale, high-resolution model of the human brain. In: Grandinetti, L., Lippert, T., Petkov, N. (eds.) BrainComp 2013. LNCS, vol. 8603, pp. 3–14. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12084-3_1

    Google Scholar 

  4. Amunts, K., Hawrylycz, M., Van Essen, D., Van Horn, J.D., Harel, N., Poline, J.B., De Martino, F., Bjaalie, J.G., Dehaene-Lambertz, G., Dehaene, S., Valdes-Sosa, P., Thirion, B., Zilles, K., Hill, S.L., Abrams, M.B., Tass, P.A., Vanduffel, W., Evans, A.C., Eickhoff, S.B.: Interoperable atlases of the human brain. Neuroimage 99, 525–532 (2014)

    Article  Google Scholar 

  5. Brodmann, K.: Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien dargestellt auf Grund des Zellbaues. Barth, Leipzig (1909)

    Google Scholar 

  6. Amunts, K., Malikovic, A., Mohlberg, H., Schormann, T., Zilles, K.: Brodmanns area 17 and 18 brought into stereotaxic space where and how variable? Neuroimage 11(1), 66–84 (2000)

    Article  Google Scholar 

  7. Eickhoff, S., Stephan, K.E., Mohlberg, H., Grefkes, C., Fink, G.R., Amunts, K., Zilles, K.: A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25(4), 1325–1335 (2005)

    Article  Google Scholar 

  8. Evans, A.C., Janke, A.L., Collins, D.L., Bailllet, S.: Brain templates and atlases. Neuroimage 62(2), 911–922 (2012)

    Article  Google Scholar 

  9. Delescluse, M., Franconville, R., Joucla, S., Lieurya, T., Pouzat, C.: Making neurophysiological data analysis reproducible. Why and how? J. Physiol. Paris 106, 159–170 (2011)

    Article  Google Scholar 

  10. Hömke, L.: A multigrid method for anisotropic PDEs in elastic image registration. Numer. Linear Algebra Appl. 13, 215–229 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lepage, C., Mohlberg, H., Pietrzyk, U., Amunts, K., Zilles, K., Evans, A.C.: Automatic repair of acquisition defects in reconstruction of histology slices of the human brain. In: 16th Annual Meeting of the Organization for Human Brain Mapping (OHBM), Barcelona, 06. - 10.06.2010: available on CD-ROM (2010)

    Google Scholar 

  12. Zhu, C., Byrd, R.H., Nocedal, L.: L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization. ACM Trans. Math. Softw. 23(4), 550–560 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Thévenaz, P., Blu, T., Unser, M.: Interpolation revisited. IEEE Trans. Med. Imaging 19(7), 739–758 (2000)

    Article  Google Scholar 

  14. Lewis, L., Lepage, C., Fournier, M., Zilles, K., Amunts, K., Evans, A.C.: BigBrain: Initial tissue classification and surface extraction. In: 20th Annual Meeting of the Organization for Human Brain Mapping (OHBM), Hamburg (2014)

    Google Scholar 

  15. Liu, S., Azevedo, C., Pelletier, D.: The use of BigBrain in MS: An ultrahigh-resolution 3D template for grey matter MRI segmentation. Neurology 82(10), 6.135 (2014)

    Google Scholar 

  16. Wagstyl, K., Lepage, C., Zilles, K., Amunts, K., Fletcher, P., Evans, A.: BigBrain: Automated analysis of laminar structure in the cerebral cortex. In: 22nd Annual Meeting of the Organization for Human Brain Mapping (OHBM), Geneva (2016)

    Google Scholar 

  17. JuBrain Cytoviewer: https://www.jubrain.fz-juelich.de/apps/cytoviewer/cytoviewer-main.php

  18. Python Software Foundation: Python Language Reference, Version 2.7. http://www.python.org

  19. MPI for Python. http://pypi.python.org/pypi/mpi4py

  20. Graph-tool: Efficient network analysis with Python. http://www.graph-tool.org

  21. Insight Segmentation and Registration Toolkit (ITK). http://www.itk.org

  22. The HDF Group: Hierarchical data format (HDF), Version 5. http://www.hdfgroup.org/HDF5

  23. Minc Tool Kit. http://www.bic.mni.mcgill.ca/ServicesSoftware/MINC

  24. The Open Provenance Model (OPM). http://www.openprovenance.org

  25. The Human Brain Project (HBP). https://www.humanbrainproject.eu

Download references

Acknowledgments

The authors thank Claude Lepage and Alan C. Evans from the Montreal Neurological Institute, Montreal, Canada, for developing and providing the HPC workflow for the 3-D reconstruction of the first BigBrain, which served as a basis for the recent workflow and for many fruitful and inspiring discussions. We thank Ana Oros-Peusquens and Nadim J. Shah for their contribution in MR-imaging. Funding was provided for this study by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 604102 (Human Brain Project), and the Portfolio Theme Supercomputing and Modeling for the Human Brain of the German Helmholtz Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Mohlberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Mohlberg, H., Tweddell, B., Lippert, T., Amunts, K. (2016). Workflows for Ultra-High Resolution 3D Models of the Human Brain on Massively Parallel Supercomputers. In: Amunts, K., Grandinetti, L., Lippert, T., Petkov, N. (eds) Brain-Inspired Computing. BrainComp 2015. Lecture Notes in Computer Science(), vol 10087. Springer, Cham. https://doi.org/10.1007/978-3-319-50862-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50862-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50861-0

  • Online ISBN: 978-3-319-50862-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics