Towards the Ultimate Display for Neuroscientific Data Analysis

  • Torsten Wolfgang KuhlenEmail author
  • Bernd Hentschel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10087)


This article wants to give some impulses for a discussion about how an “ultimate” display should look like to support the Neuroscience community in an optimal way. In particular, we will have a look at immersive display technology. Since its hype in the early 90’s, immersive Virtual Reality has undoubtedly been adopted as a useful tool in a variety of application domains and has indeed proven its potential to support the process of scientific data analysis. Yet, it is still an open question whether or not such non-standard displays make sense in the context of neuroscientific data analysis. We argue that the potential of immersive displays is neither about the raw pixel count only, nor about other hardware-centric characteristics. Instead, we advocate the design of intuitive and powerful user interfaces for a direct interaction with the data, which support the multi-view paradigm in an efficient and flexible way, and – finally – provide interactive response times even for huge amounts of data and when dealing multiple datasets simultaneously.


Virtual Reality Motion Parallax Virtual Reality System Immersive Virtual Reality Tiled Display 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research leading to this article has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement 604102 (HBP) and from the Helmholtz Portfolio Theme “Supercomputing and Modeling for the Human Brain”.


  1. 1.
    Axer, M., Amunts, K., Gräßel, D., Palm, C., Dammers, J., Axer, H., Pietrzyk, U., Zilles, K.: A novel approach to the human connectome: ultra-high resolution mapping of fiber tracts in the brain. NeuroImage 54(2), 1091–1101 (2011)CrossRefGoogle Scholar
  2. 2.
    Bryson, S., Levit, C.: The virtual windtunnel: an environment for the exploration of three-dimensional unsteady flows. In: Proceedings of IEEE Visualization 1991, pp. 17–24 (1991)Google Scholar
  3. 3.
    Cruz-Neira, C., Leigh, J., Papka, M., Barnes, C., Cohen, S.M., Das, S., Engelmann, R., Hudson, R., Roy, T., Siegel, L., Vasilakis, C., DeFanti, T.A., Sandin, D.J.: Scientists in wonderland: a report on visualization applications in the CAVE virtual environment. Commun. ACM 35(6), 64–72 (1992)CrossRefGoogle Scholar
  4. 4.
    Cruz-Neira, C., Sandin, D.J., DeFanti, T.A., Kenyon, R.V., Hart, J.C.: The CAVE: audio visual experience automatic virtual environment. In: Proceedings of the IEEE Virtual Reality Conference, pp. 59–66 (1993)Google Scholar
  5. 5.
    Gewaltig, M.-O., Diesmann, M.: NEST (NEural Simulation Tool). Scholarpedia 2(4), 1430 (2007)CrossRefGoogle Scholar
  6. 6.
    Hadwiger, M., Beyer, J., Jeong, W.-K., Pfister, H.: Interactive volume exploration of petascale microscopy data streams using a visualization-driven virtual memory approach. IEEE Trans. Vis. Comput. Graph. 18(12), 2285–2294 (2012)CrossRefGoogle Scholar
  7. 7.
    Hentschel, B., Tedjo, I., Probst, M., Wolter, M., Behr, M., Bischof, C., Kuhlen, T.W.: Interactive blood damage analysis for ventricular assist devices. IEEE Trans. Vis. Comput. Graph. 14(6), 1515–1522 (2008)CrossRefGoogle Scholar
  8. 8.
    Jacobsen, J.S., Bethel, E.W., Datta-Gupta, A., Holland, P.J.: Petroleum reservoir simulation in a virtual environment. In: Proceedings of the 13th SPE Symposium on Reservoir Simulation, pp. 233–247 (1995)Google Scholar
  9. 9.
    Kuhlen, T.W., Assenmacher, I., Jerabkova, L.: Interacting in virtual reality. In: Kraiss, K.-F. (ed.) Advanced Man-Machine Interfaces, pp. 263–314. Springer, Heidelberg (2006)Google Scholar
  10. 10.
    Kuhlen, T.W., Hentschel, B.: Towards an explorative visual analysis of cortical neuronal network simulations. In: Grandinetti, L., Lippert, T., Petkov, N. (eds.) BrainComp 2013. LNCS, vol. 8603, pp. 171–183. Springer, Heidelberg (2014)Google Scholar
  11. 11.
    Kuhlen, T.W., Hentschel, B.: Quo vadis CAVE – does immersive visualization still matter? IEEE Comput. Graph. Appl. J. 34(5), 14–21 (2014)CrossRefGoogle Scholar
  12. 12.
    Laha, B., Sensharma, K., Schiffbauer, J.D., Bowman, D.A.: Effects of immersion on visual analysis of volume data. IEEE Trans. Vis. Comput. Graph. 18(4), 597–606 (2012)CrossRefGoogle Scholar
  13. 13.
    Laha, B., Bowman, D.A., Socha, J.J.: Effects of VR system fidelity on analyzing isosurface visualization of volume datasets. IEEE Trans. Vis. Comput. Graph. 20(4), 513–522 (2014)CrossRefGoogle Scholar
  14. 14.
    Nowke, C., Schmidt, M., van Albada, S., Eppler, J., Bakker, R., Diesmann, M., Hentschel, B., Kuhlen, T.W.: VisNEST – interactive analysis of neural activity data. In: IEEE Symposium on Biological Data Visualization, pp. 65–72 (2013)Google Scholar
  15. 15.
    Nowke, C., Zielasko, D., Weyers, B., Peyser, A., Hentschel, B., Kuhlen, T.W.: Integrating visualizations into modeling NEST simulations. Front. Neuroinform. 9(29) (2015)Google Scholar
  16. 16.
    Reckfort, J., Wiese, H., Pietrzyk, U., Zilles, K., Amunts, K., Axer, M.: A multiscale approach for the reconstruction of the fiber architecture of the human brain based on 3D-PLI. Front. Neuroanat. 9, 118 (2015)CrossRefGoogle Scholar
  17. 17.
    Reda, K., Febretti, A., Knoll, A., Aurisano, J., Leigh, J., Johnson, A., Papka, M.E., Hereld, M.: Visualizing large, heterogeneous data in hybrid-reality environments. IEEE Comput. Graph. Appl. 33(4), 38–48 (2013)CrossRefGoogle Scholar
  18. 18.
    Rick, T., von Kapri, A., Caspers, S., Amunts, K., Zilles, K., Kuhlen, T.W.: Visualization of probabilistic fiber tracts in virtual reality. In: Studies in Health Technology and Informatics, vol. 163, pp. 486–492. IOS Press (2011)Google Scholar
  19. 19.
    van Dam, A., Forsberg, A., Laidlaw, D.H., LaViola, J., Simpson, R.M.: Immersive virtual reality: a progress report. IEEE Comput. Graph. Appl. 20(6), 26–52 (2000)CrossRefGoogle Scholar
  20. 20.
    Wolter, M., Hentschel, B., Schirski, M., Gerndt, A., Kuhlen, T.W.: Time step prioritising in parallel feature extraction on unsteady simulation data. In: Proceedings of EG Symposium on Parallel Graphics and Visualization (EGPGV), pp. 91–98 (2006)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Virtual Reality and Immersive Visualization Group, Visual Computing InstituteRWTH Aachen UniversityAachenGermany
  2. 2.JARA – High-Performance ComputingRWTH Aachen UniversityAachenGermany

Personalised recommendations