Skip to main content

Towards the Ultimate Display for Neuroscientific Data Analysis

  • Conference paper
  • First Online:
Brain-Inspired Computing (BrainComp 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10087))

Included in the following conference series:

Abstract

This article wants to give some impulses for a discussion about how an “ultimate” display should look like to support the Neuroscience community in an optimal way. In particular, we will have a look at immersive display technology. Since its hype in the early 90’s, immersive Virtual Reality has undoubtedly been adopted as a useful tool in a variety of application domains and has indeed proven its potential to support the process of scientific data analysis. Yet, it is still an open question whether or not such non-standard displays make sense in the context of neuroscientific data analysis. We argue that the potential of immersive displays is neither about the raw pixel count only, nor about other hardware-centric characteristics. Instead, we advocate the design of intuitive and powerful user interfaces for a direct interaction with the data, which support the multi-view paradigm in an efficient and flexible way, and – finally – provide interactive response times even for huge amounts of data and when dealing multiple datasets simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Axer, M., Amunts, K., Gräßel, D., Palm, C., Dammers, J., Axer, H., Pietrzyk, U., Zilles, K.: A novel approach to the human connectome: ultra-high resolution mapping of fiber tracts in the brain. NeuroImage 54(2), 1091–1101 (2011)

    Article  Google Scholar 

  2. Bryson, S., Levit, C.: The virtual windtunnel: an environment for the exploration of three-dimensional unsteady flows. In: Proceedings of IEEE Visualization 1991, pp. 17–24 (1991)

    Google Scholar 

  3. Cruz-Neira, C., Leigh, J., Papka, M., Barnes, C., Cohen, S.M., Das, S., Engelmann, R., Hudson, R., Roy, T., Siegel, L., Vasilakis, C., DeFanti, T.A., Sandin, D.J.: Scientists in wonderland: a report on visualization applications in the CAVE virtual environment. Commun. ACM 35(6), 64–72 (1992)

    Article  Google Scholar 

  4. Cruz-Neira, C., Sandin, D.J., DeFanti, T.A., Kenyon, R.V., Hart, J.C.: The CAVE: audio visual experience automatic virtual environment. In: Proceedings of the IEEE Virtual Reality Conference, pp. 59–66 (1993)

    Google Scholar 

  5. Gewaltig, M.-O., Diesmann, M.: NEST (NEural Simulation Tool). Scholarpedia 2(4), 1430 (2007)

    Article  Google Scholar 

  6. Hadwiger, M., Beyer, J., Jeong, W.-K., Pfister, H.: Interactive volume exploration of petascale microscopy data streams using a visualization-driven virtual memory approach. IEEE Trans. Vis. Comput. Graph. 18(12), 2285–2294 (2012)

    Article  Google Scholar 

  7. Hentschel, B., Tedjo, I., Probst, M., Wolter, M., Behr, M., Bischof, C., Kuhlen, T.W.: Interactive blood damage analysis for ventricular assist devices. IEEE Trans. Vis. Comput. Graph. 14(6), 1515–1522 (2008)

    Article  Google Scholar 

  8. Jacobsen, J.S., Bethel, E.W., Datta-Gupta, A., Holland, P.J.: Petroleum reservoir simulation in a virtual environment. In: Proceedings of the 13th SPE Symposium on Reservoir Simulation, pp. 233–247 (1995)

    Google Scholar 

  9. Kuhlen, T.W., Assenmacher, I., Jerabkova, L.: Interacting in virtual reality. In: Kraiss, K.-F. (ed.) Advanced Man-Machine Interfaces, pp. 263–314. Springer, Heidelberg (2006)

    Google Scholar 

  10. Kuhlen, T.W., Hentschel, B.: Towards an explorative visual analysis of cortical neuronal network simulations. In: Grandinetti, L., Lippert, T., Petkov, N. (eds.) BrainComp 2013. LNCS, vol. 8603, pp. 171–183. Springer, Heidelberg (2014)

    Google Scholar 

  11. Kuhlen, T.W., Hentschel, B.: Quo vadis CAVE – does immersive visualization still matter? IEEE Comput. Graph. Appl. J. 34(5), 14–21 (2014)

    Article  Google Scholar 

  12. Laha, B., Sensharma, K., Schiffbauer, J.D., Bowman, D.A.: Effects of immersion on visual analysis of volume data. IEEE Trans. Vis. Comput. Graph. 18(4), 597–606 (2012)

    Article  Google Scholar 

  13. Laha, B., Bowman, D.A., Socha, J.J.: Effects of VR system fidelity on analyzing isosurface visualization of volume datasets. IEEE Trans. Vis. Comput. Graph. 20(4), 513–522 (2014)

    Article  Google Scholar 

  14. Nowke, C., Schmidt, M., van Albada, S., Eppler, J., Bakker, R., Diesmann, M., Hentschel, B., Kuhlen, T.W.: VisNEST – interactive analysis of neural activity data. In: IEEE Symposium on Biological Data Visualization, pp. 65–72 (2013)

    Google Scholar 

  15. Nowke, C., Zielasko, D., Weyers, B., Peyser, A., Hentschel, B., Kuhlen, T.W.: Integrating visualizations into modeling NEST simulations. Front. Neuroinform. 9(29) (2015)

    Google Scholar 

  16. Reckfort, J., Wiese, H., Pietrzyk, U., Zilles, K., Amunts, K., Axer, M.: A multiscale approach for the reconstruction of the fiber architecture of the human brain based on 3D-PLI. Front. Neuroanat. 9, 118 (2015)

    Article  Google Scholar 

  17. Reda, K., Febretti, A., Knoll, A., Aurisano, J., Leigh, J., Johnson, A., Papka, M.E., Hereld, M.: Visualizing large, heterogeneous data in hybrid-reality environments. IEEE Comput. Graph. Appl. 33(4), 38–48 (2013)

    Article  Google Scholar 

  18. Rick, T., von Kapri, A., Caspers, S., Amunts, K., Zilles, K., Kuhlen, T.W.: Visualization of probabilistic fiber tracts in virtual reality. In: Studies in Health Technology and Informatics, vol. 163, pp. 486–492. IOS Press (2011)

    Google Scholar 

  19. van Dam, A., Forsberg, A., Laidlaw, D.H., LaViola, J., Simpson, R.M.: Immersive virtual reality: a progress report. IEEE Comput. Graph. Appl. 20(6), 26–52 (2000)

    Article  Google Scholar 

  20. Wolter, M., Hentschel, B., Schirski, M., Gerndt, A., Kuhlen, T.W.: Time step prioritising in parallel feature extraction on unsteady simulation data. In: Proceedings of EG Symposium on Parallel Graphics and Visualization (EGPGV), pp. 91–98 (2006)

    Google Scholar 

Download references

Acknowledgements

The research leading to this article has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement 604102 (HBP) and from the Helmholtz Portfolio Theme “Supercomputing and Modeling for the Human Brain”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Wolfgang Kuhlen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Kuhlen, T.W., Hentschel, B. (2016). Towards the Ultimate Display for Neuroscientific Data Analysis. In: Amunts, K., Grandinetti, L., Lippert, T., Petkov, N. (eds) Brain-Inspired Computing. BrainComp 2015. Lecture Notes in Computer Science(), vol 10087. Springer, Cham. https://doi.org/10.1007/978-3-319-50862-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50862-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50861-0

  • Online ISBN: 978-3-319-50862-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics