Human Brainnetome Atlas and Its Potential Applications in Brain-Inspired Computing

  • Lingzhong Fan
  • Hai Li
  • Shan Yu
  • Tianzi JiangEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10087)


Brain atlases are considered to be the cornerstone of neuroscience, but most available brain atlases lack fine-grained parcellation results and do not provide information about functionally important connectivity. Recently, novel methodologies and computerized brain mapping techniques could be used to explore the structure, function, and spatio-temporal changes in the human brain. The human Brainnetome Atlas is an in vivo map that includes fine-grained functional brain subregions and detailed anatomical and functional connection patterns for each area. These features should enable researchers to describe the large scale architecture of the human brain more accurately. Using the human Brainnetome Atlas, researchers could simulate and model brain networks using informatics and simulation technologies to elucidate the basic organizing principles of the brain. Others could use this same atlas to design novel neuromorphic systems that are inspired by the architecture of the brain. Therefore, this cutting-edge human Brainnetome Atlas paves the way for constructing an even more fine-grained atlas of the human brain and offers the potential for applications in brain-inspired computing.


Brainnetome Atlas Connectivity Diffusion tensor imaging Brain-inspired computing 



We thank Yu Zhang, Yong Yang, Junjie Zhuo, and Jiaojian Wang for their help with manuscript preparation and Rhoda E. and Edmund F. Perozzi for editing assistance and discussions. This work was partially supported by the National Key Basic Research and Development Program (973) (Grant No. 2011CB707801 and 2012CB720702), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB02030300), the Natural Science Foundation of China (Grant Nos. 91432302, 91132301, 31620103905, 81270020 and 81501179).


  1. 1.
    Sporns, O.: Cerebral cartography and connectomics. Philos. Trans. Roy. Soc. Lond. B Biol. Sci. 370 (2015). doi: 10.1098/rstb.2014.0173 Google Scholar
  2. 2.
    Amunts, K., Zilles, K.: Architectonic mapping of the human brain beyond brodmann. Neuron 88, 1086–1107 (2015)CrossRefGoogle Scholar
  3. 3.
    Van Essen, D.C.: Cartography and connectomes. Neuron 80, 775–790 (2013)CrossRefGoogle Scholar
  4. 4.
    Jiang, T.: Brainnetome: a new -ome to understand the brain and its disorders. Neuroimage 80, 263–272 (2013)CrossRefGoogle Scholar
  5. 5.
    Evans, A.C., Janke, A.L., Collins, D.L., Baillet, S.: Brain templates and atlases. Neuroimage 62, 911–922 (2012)CrossRefGoogle Scholar
  6. 6.
    Zilles, K., Amunts, K.: Centenary of Brodmann’s map–conception and fate. Nat. Rev. Neurosci. 11, 139–145 (2010)CrossRefGoogle Scholar
  7. 7.
    Brodmann, K.: Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Verlag von Johann Ambrosius Barth, Leipzig (Germany) (1909)Google Scholar
  8. 8.
    Amunts, K., Lepage, C., Borgeat, L., Mohlberg, H., Dickscheid, T., Rousseau, M.E., Bludau, S., Bazin, P.L., Lewis, L.B., Oros-Peusquens, A.M., Shah, N.J., Lippert, T., Zilles, K., Evans, A.C.: BigBrain: an ultrahigh-resolution 3D human brain model. Science 340, 1472–1475 (2013)CrossRefGoogle Scholar
  9. 9.
    Kaas, J.H.: The organization of neocortex in mammals: implications for theories of brain function. Annu. Rev. Psychol. 38, 129–151 (1987)CrossRefGoogle Scholar
  10. 10.
    Van Essen, D.C.: A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex. Neuroimage 28, 635–662 (2005)CrossRefGoogle Scholar
  11. 11.
    Bohland, J.W., Bokil, H., Allen, C.B., Mitra, P.P.: The brain atlas concordance problem: quantitative comparison of anatomical parcellations. PLoS ONE 4, e7200 (2009)CrossRefGoogle Scholar
  12. 12.
    Passingham, R.E., Stephan, K.E., Kotter, R.: The anatomical basis of functional localization in the cortex. Nat. Rev. Neurosci. 3, 606–616 (2002)CrossRefGoogle Scholar
  13. 13.
    Markov, N.T., Ercsey-Ravasz, M.M.: Ribeiro Gomes, A.R., Lamy, C., Magrou, L., Vezoli, J., Misery, P., Falchier, A., Quilodran, R., Gariel, M.A., Sallet, J., Gamanut, R., Huissoud, C., Clavagnier, S., Giroud, P., Sappey-Marinier, D., Barone, P., Dehay, C., Toroczkai, Z., Knoblauch, K., Van Essen, D.C., Kennedy, H.: A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24, 17–36 (2014)CrossRefGoogle Scholar
  14. 14.
    Dyhrfjeld-Johnsen, J., Maier, J., Schubert, D., Staiger, J., Luhmann, H.J., Stephan, K.E., Kotter, R.: CoCoDat: a database system for organizing and selecting quantitative data on single neurons and neuronal microcircuitry. J. Neurosci. Methods 141, 291–308 (2005)CrossRefGoogle Scholar
  15. 15.
    Johansen-Berg, H., Behrens, T.E., Robson, M.D., Drobnjak, I., Rushworth, M.F., Brady, J.M., Smith, S.M., Higham, D.J., Matthews, P.M.: Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. Proc. Natl. Acad. Sci. USA 101, 13335–13340 (2004)CrossRefGoogle Scholar
  16. 16.
    Eickhoff, S.B., Thirion, B., Varoquaux, G., Bzdok, D.: Connectivity-based parcellation: critique and implications. Hum. Brain Mapp. 36(12), 4771–4792 (2015)CrossRefGoogle Scholar
  17. 17.
    Yu, S.X., Shi, J.: Multiclass spectral clustering. In: Ninth IEEE International Conference on Computer Vision, 2003. Proceedings, vol. 1, pp. 313–319 (2003)Google Scholar
  18. 18.
    von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Perona, P., Zelnik-Manor, L.: Self-tuning spectral clustering. Adv. Neural Inf. Process. Syst. 17, 1601–1608 (2004)Google Scholar
  20. 20.
    Cohen, A.L., Fair, D.A., Dosenbach, N.U., Miezin, F.M., Dierker, D., Van Essen, D.C., Schlaggar, B.L., Petersen, S.E.: Defining functional areas in individual human brains using resting functional connectivity MRI. Neuroimage 41, 45–57 (2008)CrossRefGoogle Scholar
  21. 21.
    Kelly, C., Toro, R., Di Martino, A., Cox, C.L., Bellec, P., Castellanos, F.X., Milham, M.P.: A convergent functional architecture of the insula emerges across imaging modalities. Neuroimage 61, 1129–1142 (2012)CrossRefGoogle Scholar
  22. 22.
    Chang, L.J., Yarkoni, T., Khaw, M.W., Sanfey, A.G.: Decoding the role of the insula in human cognition: functional parcellation and large-scale reverse inference. Cereb. Cortex 23(2), 739–749 (2012)Google Scholar
  23. 23.
    Kim, J.H., Lee, J.M., Jo, H.J., Kim, S.H., Lee, J.H., Kim, S.T., Seo, S.W., Cox, R.W., Na, D.L., Kim, S.I., Saad, Z.S.: Defining functional SMA and pre-SMA subregions in human MFC using resting state fMRI: functional connectivity-based parcellation method. Neuroimage 49, 2375–2386 (2010)CrossRefGoogle Scholar
  24. 24.
    Nelson, S.M., Cohen, A.L., Power, J.D., Wig, G.S., Miezin, F.M., Wheeler, M.E., Velanova, K., Donaldson, D.I., Phillips, J.S., Schlaggar, B.L., Petersen, S.E.: A parcellation scheme for human left lateral parietal cortex. Neuron 67, 156–170 (2010)CrossRefGoogle Scholar
  25. 25.
    Craddock, R.C., James, G.A., Holtzheimer 3rd, P.E., Hu, X.P., Mayberg, H.S.: A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33, 1914–1928 (2012)CrossRefGoogle Scholar
  26. 26.
    Yeo, B.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., Hollinshead, M., Roffman, J.L., Smoller, J.W., Zollei, L., Polimeni, J.R., Fischl, B., Liu, H., Buckner, R.L.: The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011)CrossRefGoogle Scholar
  27. 27.
    Zhang, Y., Caspers, S., Fan, L., Fan, Y., Song, M., Liu, C., Mo, Y., Roski, C., Eickhoff, S., Amunts, K., Jiang, T.: Robust brain parcellation using sparse representation on resting-state fMRI. Brain Struct. Funct. 220, 3565–3579 (2015)CrossRefGoogle Scholar
  28. 28.
    Mishra, A., Rogers, B.P., Chen, L.M., Gore, J.C.: Functional connectivity-based parcellation of amygdala using self-organized mapping: a data driven approach. Hum. Brain Mapp. 35, 1247–1260 (2014)CrossRefGoogle Scholar
  29. 29.
    Wig, G.S., Laumann, T.O., Cohen, A.L., Power, J.D., Nelson, S.M., Glasser, M.F., Miezin, F.M., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E.: Parcellating an individual subject’s cortical and subcortical brain structures using snowball sampling of resting-state correlations. Cereb. Cortex 24, 2036–2054 (2014)CrossRefGoogle Scholar
  30. 30.
    Ryali, S., Chen, T., Supekar, K., Menon, V.: A parcellation scheme based on von Mises-Fisher distributions and Markov random fields for segmenting brain regions using resting-state fMRI. Neuroimage 65, 83–96 (2013)CrossRefGoogle Scholar
  31. 31.
    Azran, A., Ghahramani, Z.: Spectral methods for automatic multiscale data clustering. In: Proceeding of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 190–197 (2006)Google Scholar
  32. 32.
    Fan, L., Wang, J., Zhang, Y., Han, W., Yu, C., Jiang, T.: Connectivity-based parcellation of the human temporal pole using diffusion tensor imaging. Cereb. Cortex 24, 3365–3378 (2014)CrossRefGoogle Scholar
  33. 33.
    Liu, H., Qin, W., Li, W., Fan, L., Wang, J., Jiang, T., Yu, C.: Connectivity-based parcellation of the human frontal pole with diffusion tensor imaging. J. Neurosci. 33, 6782–6790 (2013)CrossRefGoogle Scholar
  34. 34.
    Beckmann, M., Johansen-Berg, H., Rushworth, M.F.: Connectivity-based parcellation of human cingulate cortex and its relation to functional specialization. J. Neurosci. 29, 1175–1190 (2009)CrossRefGoogle Scholar
  35. 35.
    Neubert, F.X., Mars, R.B., Thomas, A.G., Sallet, J., Rushworth, M.F.: Comparison of human ventral frontal cortex areas for cognitive control and language with areas in monkey frontal cortex. Neuron 81, 700–713 (2014)CrossRefGoogle Scholar
  36. 36.
    Zhuo, J., Fan, L., Liu, Y., Zhang, Y., Yu, C., Jiang, T.: Connectivity profiles reveal a transition subarea in the parahippocampal region that integrates the anterior temporal-posterior medial systems. J. Neurosci. 36, 2782–2795 (2016)CrossRefGoogle Scholar
  37. 37.
    Felleman, D.J., Van Essen, D.C.: Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991)CrossRefGoogle Scholar
  38. 38.
    Jbabdi, S., Sotiropoulos, S.N., Haber, S.N., Van Essen, D.C., Behrens, T.E.: Measuring macroscopic brain connections in vivo. Nat. Neurosci. 18, 1546–1555 (2015)CrossRefGoogle Scholar
  39. 39.
    Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., Yang, Z., Chu, C., Xie, S., Laird, A.R., Fox, P.T., Eickhoff, S.B., Yu, C., Jiang, T.: The human brainnetome atlas: a new brain atlas based on connectional architecture. Cereb. Cortex 26, 3508–3526 (2016)CrossRefGoogle Scholar
  40. 40.
    Ding, S.L., Van Hoesen, G.W., Cassell, M.D., Poremba, A.: Parcellation of human temporal polar cortex: a combined analysis of multiple cytoarchitectonic, chemoarchitectonic, and pathological markers. J. Comp. Neurol. 514, 595–623 (2009)CrossRefGoogle Scholar
  41. 41.
    Blaizot, X., Mansilla, F., Insausti, A.M., Constans, J.M., Salinas-Alaman, A., Pro-Sistiaga, P., Mohedano-Moriano, A., Insausti, R.: The human parahippocampal region: I. temporal pole cytoarchitectonic and MRI correlation. Cereb. Cortex 20, 2198–2212 (2010)CrossRefGoogle Scholar
  42. 42.
    Zhang, Y., Fan, L., Zhang, Y., Wang, J., Zhu, M., Zhang, Y., Yu, C., Jiang, T.: Connectivity-based parcellation of the human posteromedial cortex. Cereb. Cortex 24, 719–727 (2014)CrossRefGoogle Scholar
  43. 43.
    Baum, E.B.: What is Thought? MIT Press, Cambridge (2004)Google Scholar
  44. 44.
    Fodor, J.A.: The Modularity of Mind. MIT Press, Cambridge (1983)Google Scholar
  45. 45.
    Eliasmith, C., Stewart, T.C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., Rasmussen, D.: A large-scale model of the functioning brain. Science 338, 1202–1205 (2012)CrossRefGoogle Scholar
  46. 46.
    Wang, J., Fan, L., Wang, Y., Xu, W., Jiang, T., Fox, P.T., Eickhoff, S.B., Yu, C., Jiang, T.: Determination of the posterior boundary of Wernicke’s area based on multimodal connectivity profiles. Hum. Brain Mapp. 36, 1908–1924 (2015)CrossRefGoogle Scholar
  47. 47.
    Liu, H., Qin, W., Qi, H., Jiang, T., Yu, C.: Parcellation of the human orbitofrontal cortex based on gray matter volume covariance. Hum. Brain Mapp. 36, 538–548 (2015)CrossRefGoogle Scholar
  48. 48.
    Merolla, P.A., Arthur, J.V., Alvarez-Icaza, R., Cassidy, A.S., Sawada, J., Akopyan, F., Jackson, B.L., Imam, N., Guo, C., Nakamura, Y., Brezzo, B., Vo, I., Esser, S.K., Appuswamy, R., Taba, B., Amir, A., Flickner, M.D., Risk, W.P., Manohar, R., Modha, D.S.: Artificial brains. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668–673 (2014)CrossRefGoogle Scholar
  49. 49.
    Modha, D.S., Singh, R.: Network architecture of the long-distance pathways in the macaque brain. Proc. Natl. Acad. Sci. USA 107, 13485–13490 (2010)CrossRefGoogle Scholar
  50. 50.
    Frackowiak, R., Markram, H.: The future of human cerebral cartography: a novel approach. Philos. Trans. Roy. Soc. Lond. B Biol. Sci. 370 (2015). doi: 10.1098/rstb.2014.0171 Google Scholar
  51. 51.
    Glasser, M.F., Coalson, T.S., Robinson, E.C., Hacker, C.D., Harwell, J., Yacoub, E., Ugurbil, K., Andersson, J., Beckmann, C.F., Jenkinson, M., Smith, S.M., Van Essen, D.C.: A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016)CrossRefGoogle Scholar
  52. 52.
    Paxinos, G.: Human brainnetome atlas: a new chapter of brain cartography. Sci. China Life Sci. 59(9), 965–967 (2016)CrossRefGoogle Scholar
  53. 53.
    Richardson, D.S., Lichtman, J.W.: Clarifying tissue clearing. Cell 162, 246–257 (2015)CrossRefGoogle Scholar
  54. 54.
    Kasthuri, N., Hayworth, K.J., Berger, D.R., Schalek, R.L., Conchello, J.A., Knowles-Barley, S., Lee, D., Vazquez-Reina, A., Kaynig, V., Jones, T.R., Roberts, M., Morgan, J.L., Tapia, J.C., Seung, H.S., Roncal, W.G., Vogelstein, J.T., Burns, R., Sussman, D.L., Priebe, C.E., Pfister, H., Lichtman, J.W.: Saturated reconstruction of a volume of neocortex. Cell 162, 648–661 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Lingzhong Fan
    • 1
  • Hai Li
    • 1
    • 2
  • Shan Yu
    • 1
    • 3
  • Tianzi Jiang
    • 1
    • 2
    • 3
    • 4
    • 5
    Email author
  1. 1.Brainnetome Center, Institute of AutomationChinese Academy of SciencesBeijingChina
  2. 2.National Laboratory of Pattern Recognition, Institute of AutomationChinese Academy of SciencesBeijingChina
  3. 3.CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of AutomationChinese Academy of SciencesBeijingChina
  4. 4.Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
  5. 5.The Queensland Brain InstituteUniversity of QueenslandBrisbaneAustralia

Personalised recommendations