Skip to main content

Human Brainnetome Atlas and Its Potential Applications in Brain-Inspired Computing

  • Conference paper
  • First Online:
Brain-Inspired Computing (BrainComp 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10087))

Included in the following conference series:

Abstract

Brain atlases are considered to be the cornerstone of neuroscience, but most available brain atlases lack fine-grained parcellation results and do not provide information about functionally important connectivity. Recently, novel methodologies and computerized brain mapping techniques could be used to explore the structure, function, and spatio-temporal changes in the human brain. The human Brainnetome Atlas is an in vivo map that includes fine-grained functional brain subregions and detailed anatomical and functional connection patterns for each area. These features should enable researchers to describe the large scale architecture of the human brain more accurately. Using the human Brainnetome Atlas, researchers could simulate and model brain networks using informatics and simulation technologies to elucidate the basic organizing principles of the brain. Others could use this same atlas to design novel neuromorphic systems that are inspired by the architecture of the brain. Therefore, this cutting-edge human Brainnetome Atlas paves the way for constructing an even more fine-grained atlas of the human brain and offers the potential for applications in brain-inspired computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sporns, O.: Cerebral cartography and connectomics. Philos. Trans. Roy. Soc. Lond. B Biol. Sci. 370 (2015). doi:10.1098/rstb.2014.0173

    Google Scholar 

  2. Amunts, K., Zilles, K.: Architectonic mapping of the human brain beyond brodmann. Neuron 88, 1086–1107 (2015)

    Article  Google Scholar 

  3. Van Essen, D.C.: Cartography and connectomes. Neuron 80, 775–790 (2013)

    Article  Google Scholar 

  4. Jiang, T.: Brainnetome: a new -ome to understand the brain and its disorders. Neuroimage 80, 263–272 (2013)

    Article  Google Scholar 

  5. Evans, A.C., Janke, A.L., Collins, D.L., Baillet, S.: Brain templates and atlases. Neuroimage 62, 911–922 (2012)

    Article  Google Scholar 

  6. Zilles, K., Amunts, K.: Centenary of Brodmann’s map–conception and fate. Nat. Rev. Neurosci. 11, 139–145 (2010)

    Article  Google Scholar 

  7. Brodmann, K.: Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Verlag von Johann Ambrosius Barth, Leipzig (Germany) (1909)

    Google Scholar 

  8. Amunts, K., Lepage, C., Borgeat, L., Mohlberg, H., Dickscheid, T., Rousseau, M.E., Bludau, S., Bazin, P.L., Lewis, L.B., Oros-Peusquens, A.M., Shah, N.J., Lippert, T., Zilles, K., Evans, A.C.: BigBrain: an ultrahigh-resolution 3D human brain model. Science 340, 1472–1475 (2013)

    Article  Google Scholar 

  9. Kaas, J.H.: The organization of neocortex in mammals: implications for theories of brain function. Annu. Rev. Psychol. 38, 129–151 (1987)

    Article  Google Scholar 

  10. Van Essen, D.C.: A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex. Neuroimage 28, 635–662 (2005)

    Article  Google Scholar 

  11. Bohland, J.W., Bokil, H., Allen, C.B., Mitra, P.P.: The brain atlas concordance problem: quantitative comparison of anatomical parcellations. PLoS ONE 4, e7200 (2009)

    Article  Google Scholar 

  12. Passingham, R.E., Stephan, K.E., Kotter, R.: The anatomical basis of functional localization in the cortex. Nat. Rev. Neurosci. 3, 606–616 (2002)

    Article  Google Scholar 

  13. Markov, N.T., Ercsey-Ravasz, M.M.: Ribeiro Gomes, A.R., Lamy, C., Magrou, L., Vezoli, J., Misery, P., Falchier, A., Quilodran, R., Gariel, M.A., Sallet, J., Gamanut, R., Huissoud, C., Clavagnier, S., Giroud, P., Sappey-Marinier, D., Barone, P., Dehay, C., Toroczkai, Z., Knoblauch, K., Van Essen, D.C., Kennedy, H.: A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24, 17–36 (2014)

    Article  Google Scholar 

  14. Dyhrfjeld-Johnsen, J., Maier, J., Schubert, D., Staiger, J., Luhmann, H.J., Stephan, K.E., Kotter, R.: CoCoDat: a database system for organizing and selecting quantitative data on single neurons and neuronal microcircuitry. J. Neurosci. Methods 141, 291–308 (2005)

    Article  Google Scholar 

  15. Johansen-Berg, H., Behrens, T.E., Robson, M.D., Drobnjak, I., Rushworth, M.F., Brady, J.M., Smith, S.M., Higham, D.J., Matthews, P.M.: Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. Proc. Natl. Acad. Sci. USA 101, 13335–13340 (2004)

    Article  Google Scholar 

  16. Eickhoff, S.B., Thirion, B., Varoquaux, G., Bzdok, D.: Connectivity-based parcellation: critique and implications. Hum. Brain Mapp. 36(12), 4771–4792 (2015)

    Article  Google Scholar 

  17. Yu, S.X., Shi, J.: Multiclass spectral clustering. In: Ninth IEEE International Conference on Computer Vision, 2003. Proceedings, vol. 1, pp. 313–319 (2003)

    Google Scholar 

  18. von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  19. Perona, P., Zelnik-Manor, L.: Self-tuning spectral clustering. Adv. Neural Inf. Process. Syst. 17, 1601–1608 (2004)

    Google Scholar 

  20. Cohen, A.L., Fair, D.A., Dosenbach, N.U., Miezin, F.M., Dierker, D., Van Essen, D.C., Schlaggar, B.L., Petersen, S.E.: Defining functional areas in individual human brains using resting functional connectivity MRI. Neuroimage 41, 45–57 (2008)

    Article  Google Scholar 

  21. Kelly, C., Toro, R., Di Martino, A., Cox, C.L., Bellec, P., Castellanos, F.X., Milham, M.P.: A convergent functional architecture of the insula emerges across imaging modalities. Neuroimage 61, 1129–1142 (2012)

    Article  Google Scholar 

  22. Chang, L.J., Yarkoni, T., Khaw, M.W., Sanfey, A.G.: Decoding the role of the insula in human cognition: functional parcellation and large-scale reverse inference. Cereb. Cortex 23(2), 739–749 (2012)

    Google Scholar 

  23. Kim, J.H., Lee, J.M., Jo, H.J., Kim, S.H., Lee, J.H., Kim, S.T., Seo, S.W., Cox, R.W., Na, D.L., Kim, S.I., Saad, Z.S.: Defining functional SMA and pre-SMA subregions in human MFC using resting state fMRI: functional connectivity-based parcellation method. Neuroimage 49, 2375–2386 (2010)

    Article  Google Scholar 

  24. Nelson, S.M., Cohen, A.L., Power, J.D., Wig, G.S., Miezin, F.M., Wheeler, M.E., Velanova, K., Donaldson, D.I., Phillips, J.S., Schlaggar, B.L., Petersen, S.E.: A parcellation scheme for human left lateral parietal cortex. Neuron 67, 156–170 (2010)

    Article  Google Scholar 

  25. Craddock, R.C., James, G.A., Holtzheimer 3rd, P.E., Hu, X.P., Mayberg, H.S.: A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33, 1914–1928 (2012)

    Article  Google Scholar 

  26. Yeo, B.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., Hollinshead, M., Roffman, J.L., Smoller, J.W., Zollei, L., Polimeni, J.R., Fischl, B., Liu, H., Buckner, R.L.: The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011)

    Article  Google Scholar 

  27. Zhang, Y., Caspers, S., Fan, L., Fan, Y., Song, M., Liu, C., Mo, Y., Roski, C., Eickhoff, S., Amunts, K., Jiang, T.: Robust brain parcellation using sparse representation on resting-state fMRI. Brain Struct. Funct. 220, 3565–3579 (2015)

    Article  Google Scholar 

  28. Mishra, A., Rogers, B.P., Chen, L.M., Gore, J.C.: Functional connectivity-based parcellation of amygdala using self-organized mapping: a data driven approach. Hum. Brain Mapp. 35, 1247–1260 (2014)

    Article  Google Scholar 

  29. Wig, G.S., Laumann, T.O., Cohen, A.L., Power, J.D., Nelson, S.M., Glasser, M.F., Miezin, F.M., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E.: Parcellating an individual subject’s cortical and subcortical brain structures using snowball sampling of resting-state correlations. Cereb. Cortex 24, 2036–2054 (2014)

    Article  Google Scholar 

  30. Ryali, S., Chen, T., Supekar, K., Menon, V.: A parcellation scheme based on von Mises-Fisher distributions and Markov random fields for segmenting brain regions using resting-state fMRI. Neuroimage 65, 83–96 (2013)

    Article  Google Scholar 

  31. Azran, A., Ghahramani, Z.: Spectral methods for automatic multiscale data clustering. In: Proceeding of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 190–197 (2006)

    Google Scholar 

  32. Fan, L., Wang, J., Zhang, Y., Han, W., Yu, C., Jiang, T.: Connectivity-based parcellation of the human temporal pole using diffusion tensor imaging. Cereb. Cortex 24, 3365–3378 (2014)

    Article  Google Scholar 

  33. Liu, H., Qin, W., Li, W., Fan, L., Wang, J., Jiang, T., Yu, C.: Connectivity-based parcellation of the human frontal pole with diffusion tensor imaging. J. Neurosci. 33, 6782–6790 (2013)

    Article  Google Scholar 

  34. Beckmann, M., Johansen-Berg, H., Rushworth, M.F.: Connectivity-based parcellation of human cingulate cortex and its relation to functional specialization. J. Neurosci. 29, 1175–1190 (2009)

    Article  Google Scholar 

  35. Neubert, F.X., Mars, R.B., Thomas, A.G., Sallet, J., Rushworth, M.F.: Comparison of human ventral frontal cortex areas for cognitive control and language with areas in monkey frontal cortex. Neuron 81, 700–713 (2014)

    Article  Google Scholar 

  36. Zhuo, J., Fan, L., Liu, Y., Zhang, Y., Yu, C., Jiang, T.: Connectivity profiles reveal a transition subarea in the parahippocampal region that integrates the anterior temporal-posterior medial systems. J. Neurosci. 36, 2782–2795 (2016)

    Article  Google Scholar 

  37. Felleman, D.J., Van Essen, D.C.: Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991)

    Article  Google Scholar 

  38. Jbabdi, S., Sotiropoulos, S.N., Haber, S.N., Van Essen, D.C., Behrens, T.E.: Measuring macroscopic brain connections in vivo. Nat. Neurosci. 18, 1546–1555 (2015)

    Article  Google Scholar 

  39. Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., Yang, Z., Chu, C., Xie, S., Laird, A.R., Fox, P.T., Eickhoff, S.B., Yu, C., Jiang, T.: The human brainnetome atlas: a new brain atlas based on connectional architecture. Cereb. Cortex 26, 3508–3526 (2016)

    Article  Google Scholar 

  40. Ding, S.L., Van Hoesen, G.W., Cassell, M.D., Poremba, A.: Parcellation of human temporal polar cortex: a combined analysis of multiple cytoarchitectonic, chemoarchitectonic, and pathological markers. J. Comp. Neurol. 514, 595–623 (2009)

    Article  Google Scholar 

  41. Blaizot, X., Mansilla, F., Insausti, A.M., Constans, J.M., Salinas-Alaman, A., Pro-Sistiaga, P., Mohedano-Moriano, A., Insausti, R.: The human parahippocampal region: I. temporal pole cytoarchitectonic and MRI correlation. Cereb. Cortex 20, 2198–2212 (2010)

    Article  Google Scholar 

  42. Zhang, Y., Fan, L., Zhang, Y., Wang, J., Zhu, M., Zhang, Y., Yu, C., Jiang, T.: Connectivity-based parcellation of the human posteromedial cortex. Cereb. Cortex 24, 719–727 (2014)

    Article  Google Scholar 

  43. Baum, E.B.: What is Thought? MIT Press, Cambridge (2004)

    Google Scholar 

  44. Fodor, J.A.: The Modularity of Mind. MIT Press, Cambridge (1983)

    Google Scholar 

  45. Eliasmith, C., Stewart, T.C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., Rasmussen, D.: A large-scale model of the functioning brain. Science 338, 1202–1205 (2012)

    Article  Google Scholar 

  46. Wang, J., Fan, L., Wang, Y., Xu, W., Jiang, T., Fox, P.T., Eickhoff, S.B., Yu, C., Jiang, T.: Determination of the posterior boundary of Wernicke’s area based on multimodal connectivity profiles. Hum. Brain Mapp. 36, 1908–1924 (2015)

    Article  Google Scholar 

  47. Liu, H., Qin, W., Qi, H., Jiang, T., Yu, C.: Parcellation of the human orbitofrontal cortex based on gray matter volume covariance. Hum. Brain Mapp. 36, 538–548 (2015)

    Article  Google Scholar 

  48. Merolla, P.A., Arthur, J.V., Alvarez-Icaza, R., Cassidy, A.S., Sawada, J., Akopyan, F., Jackson, B.L., Imam, N., Guo, C., Nakamura, Y., Brezzo, B., Vo, I., Esser, S.K., Appuswamy, R., Taba, B., Amir, A., Flickner, M.D., Risk, W.P., Manohar, R., Modha, D.S.: Artificial brains. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668–673 (2014)

    Article  Google Scholar 

  49. Modha, D.S., Singh, R.: Network architecture of the long-distance pathways in the macaque brain. Proc. Natl. Acad. Sci. USA 107, 13485–13490 (2010)

    Article  Google Scholar 

  50. Frackowiak, R., Markram, H.: The future of human cerebral cartography: a novel approach. Philos. Trans. Roy. Soc. Lond. B Biol. Sci. 370 (2015). doi:10.1098/rstb.2014.0171

    Google Scholar 

  51. Glasser, M.F., Coalson, T.S., Robinson, E.C., Hacker, C.D., Harwell, J., Yacoub, E., Ugurbil, K., Andersson, J., Beckmann, C.F., Jenkinson, M., Smith, S.M., Van Essen, D.C.: A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016)

    Article  Google Scholar 

  52. Paxinos, G.: Human brainnetome atlas: a new chapter of brain cartography. Sci. China Life Sci. 59(9), 965–967 (2016)

    Article  Google Scholar 

  53. Richardson, D.S., Lichtman, J.W.: Clarifying tissue clearing. Cell 162, 246–257 (2015)

    Article  Google Scholar 

  54. Kasthuri, N., Hayworth, K.J., Berger, D.R., Schalek, R.L., Conchello, J.A., Knowles-Barley, S., Lee, D., Vazquez-Reina, A., Kaynig, V., Jones, T.R., Roberts, M., Morgan, J.L., Tapia, J.C., Seung, H.S., Roncal, W.G., Vogelstein, J.T., Burns, R., Sussman, D.L., Priebe, C.E., Pfister, H., Lichtman, J.W.: Saturated reconstruction of a volume of neocortex. Cell 162, 648–661 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Yu Zhang, Yong Yang, Junjie Zhuo, and Jiaojian Wang for their help with manuscript preparation and Rhoda E. and Edmund F. Perozzi for editing assistance and discussions. This work was partially supported by the National Key Basic Research and Development Program (973) (Grant No. 2011CB707801 and 2012CB720702), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB02030300), the Natural Science Foundation of China (Grant Nos. 91432302, 91132301, 31620103905, 81270020 and 81501179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianzi Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Fan, L., Li, H., Yu, S., Jiang, T. (2016). Human Brainnetome Atlas and Its Potential Applications in Brain-Inspired Computing. In: Amunts, K., Grandinetti, L., Lippert, T., Petkov, N. (eds) Brain-Inspired Computing. BrainComp 2015. Lecture Notes in Computer Science(), vol 10087. Springer, Cham. https://doi.org/10.1007/978-3-319-50862-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50862-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50861-0

  • Online ISBN: 978-3-319-50862-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics