Skip to main content

Examples of Galois Groups

  • Chapter
  • First Online:
Algebra II
  • 4427 Accesses

Abstract

Let us identify the Euclidean coordinate plane \(\mathbb{R}^{2}\) with the field \(\mathbb{C}\) in the standard way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Section 3.5.1 of Algebra I.

  2. 2.

    The parametric equation z = a + (ba) ⋅ t defines the line a, b as t runs through \(\mathbb{R}\), and defines the circle C a, b as t runs through the unit circle \(\mathop{\mathrm{U}}\nolimits _{1} \subset \mathbb{C}\).

  3. 3.

    See Section 13.3 of Algebra I.

  4. 4.

    See Theorem 13.7 on p. 313.

  5. 5.

    Obtained from the relation cos(3φ) = 4cosφ − 3cos2φ for φ = π∕9.

  6. 6.

    Recall that the cyclotomic polynomial \(\Phi _{p}(x)\) is irreducible for prime \(p \in \mathbb{N}\) by Eisenstein’s criterion; see Example 5.9 of Algebra I.

  7. 7.

    See Example 13.6 on p. 313.

  8. 8.

    See Example 13.6 on p. 313 and the proof of Corollary 14.2 on p. 14.2.

  9. 9.

    Compare with Section 3.6.3 of Algebra I.

  10. 10.

    See the discussion after formula (3.22) of Algebra I.

  11. 11.

    See Sect. 5.4.2 on p. 111.

  12. 12.

    In addition to the already cited Sect. 5.4.2, see Exercise 5.15 on p. 111.

  13. 13.

    See Section 13.3.1 of Algebra I.

  14. 14.

    Note that a 1, a 2, , a n are polynomials in t 1, t 2, , t n by Viète’s theorem.

  15. 15.

    See Problem 12.3 on p. 294 and Example 13.1 on p. 298.

  16. 16.

    See Section 3.6.3 of Algebra I and compare this problem with Problems 3.38 and 9.7 from Algebra I.

  17. 17.

    That is, the integral closure of \(\mathbb{Z}\) in \(\mathbb{K}\).

  18. 18.

    See Sect. 14.3 on p. 35.

References

  1. Danilov, V.I., Koshevoy, G.A.: Arrays and the Combinatorics of Young Tableaux, Russian Math. Surveys 60:2 (2005), 269–334.

    Article  MathSciNet  Google Scholar 

  2. Fulton, W.: Young Tableaux with Applications to Representation Theory and Geometry. Cambridge University Press, 1997.

    MATH  Google Scholar 

  3. Fulton, W., Harris, J.: Representation Theory: A First Course, Graduate Texts in Mathematics. Cambridge University Press, 1997.

    MATH  Google Scholar 

  4. Morris, S. A.: Pontryagin Duality and the Structure of Locally Compact Abelian Groups, London Math. Society LNS 29. Cambridge University Press, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gorodentsev, A.L. (2017). Examples of Galois Groups. In: Algebra II. Springer, Cham. https://doi.org/10.1007/978-3-319-50853-5_14

Download citation

Publish with us

Policies and ethics