Skip to main content

Pollen Grain Recognition Using Deep Learning

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10072))

Abstract

Pollen identification helps forensic scientists solve elusive crimes, provides data for climate-change modelers, and even hints at potential sites for petroleum exploration. Despite its wide range of applications, most pollen identification is still done by time-consuming visual inspection by well-trained experts. Although partial automation is currently available, automatic pollen identification remains an open problem. Current pollen-classification methods use pre-designed features of texture and contours, which may not be sufficiently distinctive. Instead of using pre-designed features, our pollen-recognition method learns both features and classifier from training data under the deep-learning framework. To further enhance our network’s classification ability, we use transfer learning to leverage knowledge from networks that have been pre-trained on large datasets of images. Our method achieved \(\approx \)94% classification rate on a dataset of 30 pollen types. These rates are among the highest obtained in this problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Flenley, J.: The problem of pollen recognition. In: Clowes, M.B., Penny, J.P. (eds.) Problems in Picture Interpretation, pp. 141–145. CSIRO, Canberra (1968)

    Google Scholar 

  2. Treloar, W.J., Taylor, G.E., Flenley, J.R.: Towards automation of palynology 1: analysis of pollen shape and ornamentation using simple geometric measures, derived from scanning electron microscope images. J. Quat. Sci. 19, 745–754 (2004)

    Article  Google Scholar 

  3. Mildenhall, D., Wiltshire, P., Bryant, V.: Forensic palynology: why do it and how it works. Foren. Sci. Int. 163, 163–172 (2006). Forensic Palynology

    Article  Google Scholar 

  4. Hopping, C.: Palynology and the oil industry. Rev. Palaeobot. Palynol. 2, 23–48 (1967)

    Article  Google Scholar 

  5. del Pozo-Banos, M., Ticay-Rivas, J.R., Alonso, J.B., Travieso, C.M.: Features extraction techniques for pollen grain classification. Neurocomputing 150(Part B), 377–391 (2015)

    Article  Google Scholar 

  6. Dell’Anna, R., Cristofori, A., Gottardini, E., Monti, F.: A critical presentation of innovative techniques for automated pollen identification in aerobiological monitoring networks. Pollen: Structure, Types and Effects, 273–288 (2010)

    Google Scholar 

  7. Travieso, C.M., Briceno, J.C., Ticay-Rivas, J.R., Alonso, J.B.: Pollen classification based on contour features. In: 2011 15th IEEE International Conference on Intelligent Engineering Systems (INES), pp. 17–21. IEEE (2011)

    Google Scholar 

  8. García, N.M., Chaves, V.A.E., Briceño, J.C., Travieso, C.M.: Pollen grains contour analysis on verification approach. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012. LNCS (LNAI), vol. 7208, pp. 521–532. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28942-2_47

    Chapter  Google Scholar 

  9. Xie, Y., OhEigeartaigh, M.: 3D discrete spherical Fourier descriptors based on surface curvature voxels for pollen classification. In: 2010 WASE International Conference on Information Engineering (ICIE), vol. 1, pp. 207–211. IEEE (2010)

    Google Scholar 

  10. Fernandez-Delgado, M., Carrion, P., Cernadas, E., Galvez, J.F.: Improved classification of pollen texture images using SVM and MLP (2003)

    Google Scholar 

  11. Da Silva, D.S., Quinta, L.N.B., Gonccalves, A.B., Pistori, H., Borth, M.R.: Application of wavelet transform in the classification of pollen grains. Afr. J. Agric. Res. 9, 908–913 (2014)

    Article  Google Scholar 

  12. Ticay-Rivas, J.R., Pozo-Baños, M., Travieso, C.M., Arroyo-Hernández, J., Pérez, S.T., Alonso, J.B., Mora-Mora, F.: Pollen classification based on geometrical, descriptors and colour features using decorrelation stretching method. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H. (eds.) AIAI/EANN -2011. IAICT, vol. 364, pp. 342–349. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23960-1_41

    Chapter  Google Scholar 

  13. Chica, M.: Authentication of bee pollen grains in bright-field microscopy by combining one-class classification techniques and image processing. Microsc. Res. Tech. 75, 1475–1485 (2012)

    Article  Google Scholar 

  14. Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Ng, A.Y.: Multimodal deep learning. In: Proceedings of the 28th International Conference on Machine Learning, ICML 2011, June 28 – July 2 2011, Bellevue, Washington, USA, pp. 689–696 (2011)

    Google Scholar 

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates Inc. (2012)

    Google Scholar 

  16. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Ba, J., Frey, B.: Adaptive dropout for training deep neural networks. In: Advances in Neural Information Processing Systems, pp. 3084–3092 (2013)

    Google Scholar 

  18. Vedaldi, A., Lenc, K.: MatConvNet - convolutional neural networks for MATLAB. CoRR abs/1412.4564 (2014)

    Google Scholar 

  19. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? ArXiv e-prints (2014)

    Google Scholar 

  20. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. In: British Machine Vision Conference (2014)

    Google Scholar 

  21. Marcos, J.V., Nava, R., Cristobal, G., Redondo, R., Escalante-Ramirez, B., Bueno, G., Deniz, O., Gonzalez-Porto, A., Pardo, C., Chung, F., Rodriguez, T.: Automated pollen identification using microscopic imaging and texture analysis. Micron 68, 36–46 (2015)

    Article  Google Scholar 

  22. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manage. 45(4), 427–437 (2009). Elsevier

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amar Daood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Daood, A., Ribeiro, E., Bush, M. (2016). Pollen Grain Recognition Using Deep Learning. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2016. Lecture Notes in Computer Science(), vol 10072. Springer, Cham. https://doi.org/10.1007/978-3-319-50835-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50835-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50834-4

  • Online ISBN: 978-3-319-50835-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics