Skip to main content

Microstructure of the Nanostructured Oxide Composite Thin Films and Its Functional Properties

  • Chapter
  • First Online:
  • 2357 Accesses

Abstract

In this manuscript, the nanocomposite oxide film and its functional properties are discussed. The microstructure and the interfacial coupling effect play key roles in determining the functional properties. Thus, recent experimental research progresses in the growth mechanism and the microstructure of the nanocomposite oxide film are presented, with a focus on ferromagnetic (FM), ferroelectric (FE), supperconductor, dielectric and conductor (CD) nanocomposite oxide thin films. In this part, the growth mechanism has been the major part of this chapter, and is devoted to the relationship between the microstructure and the physical properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. H. Zheng, J. Wang, S.E. Lofland, et al., Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303(5658), 661–663 (2004)

    Article  Google Scholar 

  2. F. Zavaliche, D. Hong, H.Q. Chiang, et al., Electric field-induced magnetization switching in epitaxial columnar nanostructures. Nano Lett. 5(9), 1793–1796 (2005)

    Article  Google Scholar 

  3. N.M. Aimon, D.H. Kim, X.Y. Sun, C.A. Ross, Multiferroic behavior of templated BiFeO3-CoFe2O4 self-assembled nanocomposites. ACS Appl. Mater. Interfaces 7(4), 2263–2268 (2015)

    Article  Google Scholar 

  4. X.K. Ning, Z.J. Wang, Z.D. Zhang, Large, temperature-tunable low-field magnetoresistance in La0.7Sr0.3MnO3:NiO nanocomposite films modulated by microstructures. Adv. Funct. Mater. 24(34), 5393–5401 (2014)

    Article  Google Scholar 

  5. X.K. Ning, Z.J. Wang, Z.D. Zhang, Controllable self-assembled microstructures of La0.7Ca0.3MnO3:NiO nanocomposite thin films and their tunable functional properties. Adv. Mater. Interfaces 2(15), 1500302–1500311 (2015)

    Article  Google Scholar 

  6. B.S. Kang, H. Wang, J.L. MacManus-Driscoll, Y. Li, Q.X. Jia, Low field magnetotransport properties of (La0.7Sr0.3MnO3)(0.5):(ZnO)(0.5) nanocomposite films. Appl. Phys. Lett. 88(19), 192514–192517 (2006)

    Article  Google Scholar 

  7. H.L. Wang, X.K. Ning, Z.J. Wang, Enhanced electrical conductivity of Au-LaNiO3 nanocomposite thin films by chemical solution deposition. RSC Adv. 5(94), 76783–76787 (2015)

    Article  Google Scholar 

  8. Z.R. Wang, T. Hu, L.W. Tang, et al., Ag nanoparticle dispersed PbTiO3 percolative composite thin film with high permittivity. Appl. Phys. Lett. 93(22), 222901–222904 (2008)

    Article  Google Scholar 

  9. W.D. Wu, Y.J. He, F. Wang, et al., Preparation and characterization of Co-BaTiO3 nano-composite films by the pulsed laser deposition. J. Cryst. Growth 289(1), 408–413 (2006)

    Article  Google Scholar 

  10. M.L. Hammock, A. Chortos, B.C.K. Tee, et al., 25th Anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 25(42), 5997–6038 (2013)

    Article  Google Scholar 

  11. R. Zhao, W.W. Li, J.H. Lee, et al., Precise tuning of (YBa2Cu3O7-δ)1-x:(BaZrO3)x thin film nanocomposite structures. Adv. Funct. Mater. 24(33), 5240–5245 (2014)

    Article  Google Scholar 

  12. L.W. Martin, Y.-H. Chu, R. Ramesh, Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Mater. Sci. Eng. R Rep. 68(4), 89–133 (2010)

    Article  Google Scholar 

  13. J.S. Andrew, J.D. Starr, M.A. Budi, Prospects for nanostructured multiferroic composite materials. Scr. Mater. 74, 38–43 (2014)

    Article  Google Scholar 

  14. A. Llordés, A. Palau, J. Gázquez, et al., Nanoscale strain-induced pair suppression as a vortex-pinning mechanism in high-temperature superconductors. Nat. Mater. 11(4), 329–336 (2012)

    Article  Google Scholar 

  15. J.L. MacManuas-Driscoll, Self-assembled heteroepitaxial oxide nanocomposite thin film structures: designing interface-induced functionality in electronic materials. Adv. Funct. Mater. 20(13), 2035–2045 (2010)

    Article  Google Scholar 

  16. H. Zheng, Q. Zhan, F. Zavaliche, et al., Controlling self-assembled perovskite-spinel nanostructures. Nano Lett. 6(7), 1401–1407 (2006)

    Article  Google Scholar 

  17. N.N. Padurow, Mischbarkeit im system rutil-zinnstein. Naturwissenschaften 43(17), 395–396 (1956)

    Article  Google Scholar 

  18. D. Fuks, S. Dorfman, S. Piskunov, E.A. Kotomin, Ab initio thermodynamics of Bacr(1−c)TiO3 solid solutions. Phys. Rev. B 71(1), 014111–014120 (2005)

    Article  Google Scholar 

  19. C.L. Zhang, S. Yeo, Y. Horibe, Y.J. Choi, et al., Coercivity and nanostructure in magnetic spinel Mg (Mn, Fe)2O4. Appl. Phys. Lett. 90(13), 3123–3126 (2007)

    Google Scholar 

  20. B.S. Guiton, P.K. Davies, Nano-chessboard superlattices formed by spontaneous phase separation in oxides. Nat. Mater. 6(8), 586–591 (2007)

    Article  Google Scholar 

  21. S. Park, Y. Horibe, T. Asada, et al., Highly aligned epitaxial nanorods with a checkerboard pattern in oxide films. Nano Lett. 8(2), 720–724 (2008)

    Article  Google Scholar 

  22. B. Zhang, M. Lelovic, W.A. Soffa, The formation of polytwinned structures in Fe Pt and Fe Pd alloys. Scr. Metall. Mater. 25(7), 1577–1582 (1991)

    Article  Google Scholar 

  23. Y.L. Bouar, A. Loiseau, A.G. Khachaturyan, Origin of chessboard-like structures in decomposing alloys. Theoretical model and computer simulation. Acta Mater. 46(8), 2777–2788 (1998)

    Article  Google Scholar 

  24. Y. Ni, W. Rao, A.G. Khachaturyan, Pseudospinodal mode of decomposition in films and formation of chessboard-like nanostructure. Nano Lett. 9(9), 3275–3281 (2009)

    Article  Google Scholar 

  25. R.E. Newnham, D.P. Skinner, L.E. Cross, Connectivity and piezoelectric-pyroelectric composite. Mater. Res. Bull. 13(5), 525–536 (1978)

    Article  Google Scholar 

  26. R. Comes, H. Liu, M. Khokhlov, et al., Directed self-assembly of epitaxial CoFe2O4-BiFeO3 multiferroic nanocomposites. Nano Lett. 12(5), 2367–2373 (2012)

    Article  Google Scholar 

  27. N.M. Aimon, K.C. Hong, X.Y. Sun, et al., Templated self-assembly of functional oxide nanocomposites. Adv. Mater. 26(19), 3063–3067 (2014)

    Article  Google Scholar 

  28. G.M. Whitesides, B. Grzybowski, Self-assembly at all scales. Science 295(5564), 2418–2421 (2002)

    Article  Google Scholar 

  29. J.M. Lehn, Toward self-organization and complex matter. Science 295(5564), 2400–2403 (2002)

    Article  Google Scholar 

  30. L.G. Li, W. Zhang, F. Khatkhatay, et al., Strain and interface effects in a novel bismuth-based self-assembled supercell structure. ACS Appl. Mater. Interfaces 7(21), 11631–11636 (2015)

    Article  Google Scholar 

  31. A. Chen, Z. Bi, C.F. Tsai, et al., Tunable low-field magnetoresistance in (La0.7Sr0.3MnO3)0.5:(ZnO)0.5, self-assembled vertically aligned nanocomposite thin films. Adv. Funct. Mater. 21(13), 2423–2429 (2011)

    Article  Google Scholar 

  32. H.K. Dong, B. Lei, N.M. Aimon, et al., Combinatorial pulsed laser deposition of Fe, Cr, Mn, and Ni-substituted SrTiO3 films on Si substrates. ACS Comb. Sci. 14(3), 179–190 (2012)

    Article  Google Scholar 

  33. D.H. Kim, N.M. Aimon, C.A. Ross, Self-assembled growth and magnetic properties of a BiFeO3-MgFe2O4 nanocomposite prepared by pulsed laser deposition. J. Appl. Phys. 113(17), 17B510 (2010)

    Article  Google Scholar 

  34. N.M. Aimon, H.K. Dong, K.C. Hong, et al., Deposition of epitaxial BiFeO3/CoFe2O4 nanocomposites on (001) SrTiO3 by combinatorial pulsed laser deposition. Appl. Phys. Lett. 100(9), 092901–092905 (2012)

    Article  Google Scholar 

  35. H.M. Christen, D.P. Norton, L.A. Géa, et al., Pulsed laser deposition of solid-solution films using segmented targets. Thin Solid Films 312(312), 156–159 (1998)

    Article  Google Scholar 

  36. A. Imai, X. Cheng, H.L. Xin, et al., Epitaxial Bi5Ti3FeO15-CoFe2O4 pillar-matrix multiferroic nanostructures. ACS Nano 7(12), 11079–11086 (2013)

    Article  Google Scholar 

  37. Z. Liao, P. Gao, S. Stadler, et al., Tuning properties of columnar nanocomposite oxides. Appl. Phys. Lett. 103(103), 043112–043116 (2013)

    Article  Google Scholar 

  38. C.H. Yang, F. Yildiz, S.H. Lee, et al., Synthesis of nanoscale composites of exchange biased MnFe2O4 and Mn-doped BiFeO3. Appl. Phys. Lett. 90(16), 163116–163119 (2007)

    Article  Google Scholar 

  39. H.J. Liu, L.Y. Chen, Q. He, et al., Epitaxial photostriction-magnetostriction coupled self-assembled nanostructures. ACS Nano 6(8), 6952–6959 (2012)

    Article  Google Scholar 

  40. Q. Liang, X. Bi, Nanostructure and performance of Pt–LaNiO3, composite film for ferroelectric film devices. Acta Mater. 57(14), 4109–4114 (2009)

    Article  Google Scholar 

  41. J.G. Wan, X.W. Wang, Y.J. Wu, et al., Magnetoelectric CoFe2O4-Pb(Zr,Ti)O3 composite thin films derived by a sol-gel process. Appl. Phys. Lett. 86(12), 122501–122504 (2005)

    Article  Google Scholar 

  42. X.L. Zhong, J.B. Wang, M. Liao, et al., Multiferroic nanoparticulate Bi3.15Nd0.85Ti3O12 oFe2O4 composite thin films prepared by a chemical solution deposition technique. Appl. Phys. Lett. 90(15), 152903–152906 (2007)

    Article  Google Scholar 

  43. H. Ryu, P. Murugavel, J. H. Lee, and S. C. Chae, Magnetoelectric coupling of multilayered Pb(Zr0.52Ti0.48)O3-CoFe2O4 film by piezoresponse force microscopy under magnetic field, Appl. Phys. Lett., vol. 89, no. 10, 102907, Jun. 2006.

    Google Scholar 

  44. M. Staruch, D. Hires, A. Chen, Z. Bi, Enhanced low-field magnetoresistance in La0.67Sr0.33MnO3:MgO composite films. J. Appl. Phys. 110(11), 3913–3918 (2011)

    Article  Google Scholar 

  45. M. Staruch, C. Cantoni, M. Jain, Systematic study of magnetotransport properties and enhanced low-field magnetoresistance in thin films of La0.67Sr0.33MnO3 + Mg(O). Appl. Phys. Lett. 102(6), 6436–6444 (2013)

    Google Scholar 

  46. S.A. Fedoseev, A.V. Pan, S. Rubanov, et al., Large, Controllable Spikes of Magnetoresistance in La2/3Ca1/3MnO3/SrTiO3 Superlattices. ACS Nano 7(1), 286–293 (2013)

    Article  Google Scholar 

  47. Y.G. Ma, W.N. Cheng, M. Ning, C.K. Ong, Magnetoelectric effect in epitaxial Pb(Zr0.52Ti0.48)O3/La0.7Sr0.3MnO3 composite thin film. Appl. Phys. Lett. 90(15), 15152911–15152913 (2007)

    Article  Google Scholar 

  48. C. Deng, Y. Zhang, J. Ma, Y. Lin, Magnetic-electric properties of epitaxial multiferroic NiFe2O4-BaTiO3, heterostructure. J. Appl. Phys. 102(7), 7074114–7074118 (2007)

    Article  Google Scholar 

  49. M. Dawber, C. Lichtensteiger, M. Cantoni, et al., Unusual behavior of the ferroelectric polarization in PbTiO3/SrTiO3 superlattices. Physics 95(17), 177601–177604 (2005)

    Google Scholar 

  50. S.J. Callori, J. Gabel, D. Su, et al., Ferroelectric PbTiO3/SrRuO3 superlattices with broken inversion symmetry. Phys. Rev. Lett. 109(6), 067601–067606 (2012)

    Article  Google Scholar 

  51. M. Dawber, N. Stucki, C. Lichtensteiger, et al., Tailoring the properties of artificially layered ferroelectric superlattices. J. Adv. Mater. 19(23), 4153–4159 (2007)

    Article  Google Scholar 

  52. S.S.A. Seo, J.H. Lee, H.N. Lee, et al., Ferroelectricity in artificial bicolor oxide superlattices. J. Adv. Mater. 19(18), 2460–2464 (2007)

    Article  Google Scholar 

  53. K. Boldyreva, L. Pintilie, A. Lotnyk, et al., Thickness-driven antiferroelectric-to-ferroelectric phase transition of thin PbZrO3 layers in epitaxial PbZrO3∕Pb(Zr0.8Ti0.2)O3 multilayers. Appl. Phys. Lett. 91(12), 122915 (2007)

    Article  Google Scholar 

  54. I. Vrejoiu, Y.L. Zhu, G.L. Rhun, et al., Structure and properties of epitaxial ferroelectric PbZr0.4Ti0.6O3∕PbZr0.6Ti0.4O3 superlattices grown on SrTiO3 (001) by pulsed laser deposition. Appl. Phys. Lett. 90(7), 072909–072912 (2007)

    Article  Google Scholar 

  55. R. Ramesh, N.A. Spaldin, et al., Multiferroics: progress and prospects in thin films. Nat. Mater. 6(1), 21–29 (2007)

    Article  Google Scholar 

  56. D. Tian, Q. Chen, F.Q. Nie, et al., Patterned wettability transition by photoelectric cooperative and anisotropic wetting for liquid reprography. Adv. Mater. 21(37), 3744–3749 (2009)

    Article  Google Scholar 

  57. J.L. MacManus-Driscoll, P. Zerrer, H. Wang, et al., Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. Nat. Mater. 7(4), 314–320 (2008)

    Article  Google Scholar 

  58. H. Yang, H. Wang, G.F. Zou, et al., Leakage mechanisms of self-assembled (BiFeO3)0.5:(Sm2O3)0.5 nanocomposite films. Appl. Phys. Lett. 93(14), 142904–142907 (2008)

    Article  Google Scholar 

  59. X.F. Liu, J. Shi, Magnetic tunnel junctions with Al2O3 tunnel barriers prepared by atomic layer deposition. Appl. Phys. Lett. 102(20), 202401–202405 (2013)

    Article  Google Scholar 

  60. B. Huang, Y. Liu, R. Zhang, et al., Low-field MR behaviour in La0.67Ca0.33MnO3/ZrO2 composite system. J. Phys. D Appl. Phys. 36(16), 1923–1927 (2003)

    Article  Google Scholar 

  61. C.W. Nan, M.I. Bichurin, S. Dong, et al., Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103(3), 031101–031135 (2008)

    Article  Google Scholar 

  62. S. Dong, J. Zhai, J.F. Li, D. Viehland, et al., Magnetoelectric gyration effect in Tb1-xDyxFe2-y/Pb(Zr,Ti)O3 laminated composites at the electromechanical resonance. Appl. Phys. Lett. 89(24), 243512–243515 (2006)

    Article  Google Scholar 

  63. Z. Wang, Y. Yang, R. Viswan, J. Li, et al., Giant electric field controlled magnetic anisotropy in epitaxial BiFeO3-CoFe2O4 thin film heterostructures on single crystal Pb(Mg1/3Nb2/3)0.7Ti0.3O3 substrate. Appl. Phys. Lett. 99(4), 043110–043112 (2011)

    Article  Google Scholar 

  64. H.K. Dong, N.M. Aimon, Y.S. Xue, et al., Integration of self-assembled epitaxial BiFeO3-CoFe2O4, multiferroic nanocomposites on silicon substrates. Adv. Funct. Mater. 24(37), 5889–5896 (2014)

    Article  Google Scholar 

  65. I. Levin, J. Li, J. Slutsker, et al., Design of self-assembled multiferroic nanostructures in epitaxial films. Adv. Mater. 18(15), 2044–2047 (2006)

    Article  Google Scholar 

  66. H. Zheng, Q. Zhan, F. Zavaliche, et al., Controlling self-assembled perovskite-spinel nanostructures. Adv. Mater. 6(7), 1401–1407 (2006)

    Google Scholar 

  67. H. Zheng, F. Straub, Q. Zhan, et al., Self-assembled growth of BiFeO3-CoFe2O4 nanostructures. Adv. Mater. 18(20), 2747–2752 (2006)

    Article  Google Scholar 

  68. Q. Zhan, R. Yu, S.P. Crane, et al., Structure and interface chemistry of perovskite-spinel nanocomposite thin films. Appl. Phys. Lett. 89(17), 172902–172904 (2006)

    Article  Google Scholar 

  69. N. Dix, R. Muralidharan, J.M. Rebled, et al., Selectable spontaneous polarization direction and magnetic anisotropy in BiFeO3-CoFe2O4 epitaxial nanostructures. ACS Nano 4(8), 4955–4961 (2010)

    Article  Google Scholar 

  70. N. Dix, R. Muralidharan, J. Guyonnet, et al., On the strain coupling across vertical interfaces of switchable BiFeO3-CoFe2O4 multiferroic nanostructures. Appl. Phys. Lett. 95(95), 062907–062910 (2009)

    Article  Google Scholar 

  71. L. Yan, Z.P. Xing, Z.G. Wang, T. Wang, et al., Direct measurement of magnetoelectric exchange in self-assembled epitaxial BiFeO3-CoFe2O4 nanocomposite thin films. Appl. Phys. Lett. 94(19), 192902 (2009)

    Article  Google Scholar 

  72. Z.G. Wang, Y.X. Li, R. Viswan, B.L. Hu, et al., Engineered magnetic shape anisotropy in BiFeO3-CoFe2O4 self-assembled thin films. ACS Nano 7(4), 3447–3456 (2013)

    Article  Google Scholar 

  73. S.J. Zhu, J. Yuan, B.Y. Zhu, et al., Exchange bias effect and enhanced magnetoresistance in La0.67Sr0.33MnO3∕SrTiO3 superlattices. Appl. Phys. Lett. 90(11), 112502–112505 (2007)

    Article  Google Scholar 

  74. Y.-M. Kang, H.-J. Kim, S.-I. Yoo, Excellent low field magnetoresistance properties of the La0.7Sr0.3Mn1+d O3-manganese oxide composites. Appl. Phys. Lett. 95(5), 052510–052513 (2009)

    Article  Google Scholar 

  75. S. Ornes, Giant magnetoresistance, Proceedings of the National Academy of Sciences, vol. 110, no.10, pp. 3710, 2013

    Google Scholar 

  76. B.B. Nelsoncheeseman, F.J. Wong, R.V. Chopdekar, et al., Room temperature magnetic barrier layers in magnetic tunnel junctions. Phys. Rev. B 81(21), 214421–214428 (2010)

    Article  Google Scholar 

  77. P. P. Deen, F. Yokaichiya, A. de Santis, et al., Ferromagnetic clusters and superconducting order in La0.7Ca0.3MnO3∕YBa2Cu3O7-δ heterostructures, Phys. Rev. B, vol. 74, no. 22, pp. 224414, 2006

    Google Scholar 

  78. P.P. Deen, F. Yokaichiya, A. de Santis, F. Bobba, Spin-polarized intergrain tunneling in La2/3Sr1/3MnO3. Phys. Rev. Lett. 77(10), 2041–2044 (1996)

    Article  Google Scholar 

  79. H. Li, J.R. Sun, H.K. Wong, Enhanced low-field magnetoresistance in La2/3Ca1/3MnO3/Pr2/3Ca1/3MnO3 superlattices. Appl. Phys. Lett. 80(4), 628–630 (2002)

    Article  Google Scholar 

  80. S. Jin, T.H. Tiefel, M. Mccormack, et al., Thousandfold change in resistivity in magnetoresistive la-ca-mn-o films. Science 264(5157), 413 (1994)

    Article  Google Scholar 

  81. M. H. Jo, N. D. Mathur, J. E. Evetts, et al., Magnetotransport and interface magnetism in manganite heterostructures: implications for spin polarized tunneling, MRS Proceedings. Cambridge University Press, vol. 602, pp. 3, 1999

    Google Scholar 

  82. V. Moshnyaga, B. Damaschke, O. Shapoval, et al., Corrigendum: structural phase transition at the percolation threshold in epitaxial (La0.7Ca0.3MnO3)1-x :(MgO) x nanocomposite films. Nat. Mater. 2(4), 247–252 (2003)

    Article  Google Scholar 

  83. D. Bhadra, M.G. Masud, S.K. De, et al., Observation of large magnetodielectric and direct magnetoelectric behavior in LCMO/PVDF 0-3 nanocomposites. Appl. Phys. Lett. 102(7), 072902–072907 (2013)

    Article  Google Scholar 

  84. Y.K. Tang, X.F. Ge, X.F. Si, et al., Influence of magnetic correlations on low-field magnetoresistance in La2/3Sr1/3MnO3/SrTiO3 composites. Phys. Status Solidi A 210(6), 1195 (2013)

    Article  Google Scholar 

  85. L. Li, X. Zhang, L. Li, et al., Magnetoresistance of single-crystalline La0.67Sr0.33MnO3/MgO nanorod arrays. Solid State Commun. 171(10), 46 (2013)

    Article  Google Scholar 

  86. J. Li, Q. Huang, Z.W. Li, et al., Enhanced magnetoresistance in Ag-doped granular La2/3Sr 1/3MnO3 thin films prepared by dual-beam pulsed-laser deposition. J. Appl. Phys. Lett. 89(11), 7428–7430 (2001)

    Google Scholar 

  87. M. Staruch, H. Gao, P. Gao, et al., Low-field magnetoresistance in La0.67Sr0.33MnO3:ZnO composite film. Adv. Funct. Mater. 22(17), 3591 (2012)

    Article  Google Scholar 

  88. L. Yan, L.B. Kong, T. Yang, et al., Magnetoresistance and current-voltage characteristics in La2/3Sr1/3MnO3/ZnO composites. J. Appl. Phys. 96(3), 1568–1571 (2004)

    Article  Google Scholar 

  89. S.A. Köster, V. Moshnyaga, K. Samwer, et al., Doping of interfaces in (La0.7Sr0.3MnO3)1-x:(MgO)x composite films. Appl. Phys. Lett. 81(9), 1648–1650 (2002)

    Article  Google Scholar 

  90. Z. Zhang, R. Ranjith, B.T. Xie, et al., Enhanced low field magnetoresistance in nanocrystalline La0.7Sr0.3MnO3 synthesized on MgO nanowires. Appl. Phys. Lett. 96(22), 222501 (2010)

    Article  Google Scholar 

  91. P. Kameli, H. Salamati, M. Eshraghi, et al., The effect of TiO2 doping on the structure and magnetic and magnetotransport properties of La0.75Sr0.25MnO3 composite. J. Appl. Phys. 98(4), 043908–043912 (2005)

    Article  Google Scholar 

  92. A. Gaur, G.D. Varma, H.K. Singh, Enhanced low field magnetoresistance in La0.7Sr0.3MnO3/TiO2 composite. J. Phys. D Appl. Phys. 39(16), 3531–3535 (2006)

    Article  Google Scholar 

  93. A. Gaur, G.D. Varma, Electrical and magnetotransport properties of La0.7Sr0.3MnO3/TiO2 composites. Cryst. Res. Technol. 42(2), 164–168 (2007)

    Article  Google Scholar 

  94. S. Valencia, O. Castaño, J. Fontcuberta, et al., Enhanced low field magnetoresistive response in (La2/3Sr1/3MnO3)x/(CeO2)1−x composite thick films prepared by screen printing. J. Appl. Phys. 94(4), 2524–2528 (2003)

    Article  Google Scholar 

  95. W.J. Lu, Y.P. Sun, X.B. Zhu, et al., Low-field magnetoresistance in La0.8Sr0.2MnO3/ZrO2 composite system. Mater. Lett. 60(27), 3207–3211 (2006)

    Article  Google Scholar 

  96. K. Dörr, T. Walter, M. Sahana, et al., Magnetotransport of La0.7Sr0.3MnO3/SrTiO3 multilayers with ultrathin manganite layers. J. Appl. Phys. 89(11), 6973–6975 (2001)

    Article  Google Scholar 

  97. Z. Zi, Y. Fu, Q. Liu, et al., Enhanced low-field magnetoresistance in LSMO/SFO composite system. J. Magn. Magn. Mater. 324(6), 1117–1121 (2012)

    Article  Google Scholar 

  98. S. Gupta, R. Ranjit, C. Mitra, et al., Enhanced room-temperature magnetoresistance in La0.7Sr0. 3MnO3-glass composites. Appl. Phys. Lett. 78(3), 362–364 (2001)

    Article  Google Scholar 

  99. R.N. Mahato, H. Lülf, M.H. Siekman, et al., Ultrahigh magnetoresistance at room temperature in molecular wires. Science 341(6143), 257–260 (2013)

    Article  Google Scholar 

  100. P. Dey, T. K. Nath, Effect of grain size modulation on the magneto-and electronic-transport properties of La0.7Ca0.3MnO3 nanoparticles: the role of spin-polarized tunneling at the enhanced grain surface, Phys. Rev. B, vol. 73, no. 21, pp. 214425, Jun. 2006.

    Google Scholar 

  101. A. Sadhu, S. Bhattacharyya, Enhanced low-field magnetoresistance in La0.71Sr0.29MnO3 nanoparticles synthesized by the nonaqueous Sol-Gel route. Chem. Mater. 26(4), 1702–1710 (2014)

    Article  Google Scholar 

  102. T.H. Kim, M. Uehara, S.W. Cheong, et al., Large room-temperature intergrain magnetoresistance in double perovskite SrFe1-x(Mo or Re)xO3. Appl. Phys. Lett. 74(12), 1737–1739 (1999)

    Article  Google Scholar 

  103. H.J. Liu, V.T. Tra, Y.J. Chen, et al., Large magnetoresistance in magnetically coupled SrRuO3–CoFe2O4 self-assembled nanostructures. Adv. Mater. 25(34), 4753–4759 (2013)

    Article  Google Scholar 

  104. W. Zhang, A. Chen, F. Khatkhatay, et al., Integration of self-assembled vertically aligned nanocomposite (La0.7Sr0.3MnO3)1–x:(ZnO)x thin films on silicon substrates. ACS Appl. Mater. Interfaces 5(10), 3995–3999 (2013)

    Google Scholar 

  105. A.P. Chen, W. Zhang, J. Jian, et al., Role of boundaries on low-field magnetotransport properties of La 0.7Sr0.3MnO3-based nanocomposite thin films. J. Mater. Res. 28(13), 1707–1714 (2013)

    Article  Google Scholar 

  106. Z. Sheng, Y. Sun, X. Zhu, et al., Enhanced low-field magnetization and magnetoresistance in nano-MgO added La2/3Ca1/3MnO3 composites. J. Phys. D Appl. Phys. 40(11), 3300–3305 (2007)

    Article  Google Scholar 

  107. L. Joshi, S. Keshri, Extrinsic behavior in La0.67Ca0.33MnO3-BaTiO3 composites. Ceram. Int. 38(7), 5889–5896 (2012)

    Article  Google Scholar 

  108. L. Fei, L. Zhu, X. Cheng, et al., Structure and magnetotransport properties of epitaxial nanocomposite La0.67Ca0.33MnO3: SrTiO3 thin films grown by a chemical solution approach. Appl. Phys. Lett. 100(8), 082403–082408 (2012)

    Article  Google Scholar 

  109. P.K. Siwach, P. Srivastava, J. Singh, et al., Broad temperature range low field magnetoresistance in La0.7Ca0.3MnO3: nano-ZnO composites. J. Alloys Compd. 481(1), 17–21 (2009)

    Article  Google Scholar 

  110. D.K. Satapathy, M.A. Uribe-Laverde, I. Marozau, et al., Magnetic Proximity Effect in YBa2Cu3O7/La2/3Ca1/3MnO3 and YBa2Cu3O7/LaMnO3+σSuperlattices. Phys. Rev. Lett. 108(19), 197201–197206 (2012)

    Article  Google Scholar 

  111. A.V. Ustinov, V.K. Kaplunenko, Rapid single-flux quantum logic using π-shifters. J. Appl. Phys. 94(8), 5405–5407 (2003)

    Article  Google Scholar 

  112. A.I. Buzdin, Proximity effects in superconductor-ferromagnet heterostructures. Rev. Mod. Phys. 77(3), 935–976 (2005)

    Article  Google Scholar 

  113. M.J.M. De Jong, C.W.J. Beenakker, Andreev reflection in ferromagnet-superconductor junctions. Phys. Rev. Lett. 74(9), 1657–1660 (1995)

    Article  Google Scholar 

  114. R.J. Soulen, J.M. Byers, M.S. Osofsky, et al., Measuring the spin polarization of a metal with a superconducting point contact. Science 282(5386), 85–88 (1998)

    Article  Google Scholar 

  115. S. K. Upadhyay, A. Palanisami, R. N. Louie, et al., Probing ferromagnets with Andreev reflection, Phys. Rev. Lett., vol. 81, no. 15, pp. 3247, Oct. 1998.

    Google Scholar 

  116. Z. Y. Chen, A. Biswas, I. Žutić, et al, Spin-polarized transport across a La0.7Sr0.3MnO3/YBa2Cu3O7−x interface: role of Andreev bound states, Phys. Rev. B, vol. 63, no. 21, pp. 212508, May 2001.

    Google Scholar 

  117. T. Holden, H.U. Habermeier, G. Cristiani, et al., Proximity induced metal-insulator transition in YBa2Cu3O7/La2/3Ca1/3MnO3 superlattices. Phys. Rev. B 69(6), 064505–064512 (2004)

    Article  Google Scholar 

  118. A. Hoffmann, S.G.E. Te Velthuis, Z. Sefrioui, et al., Suppressed magnetization in La0.7Ca0.3MnO3/YBa2Cu3O7−δ superlattices. Phys. Rev. B 72(14), 140407–140411 (2005)

    Article  Google Scholar 

  119. J. Chakhalian, J.W. Freeland, G. Srajer, et al., Magnetism at the interface between ferromagnetic and superconducting oxides. Nat. Phys. 2(4), 244–248 (2006)

    Article  Google Scholar 

  120. A.F. Volkov, K.B. Efetov, Proximity effect and its enhancement by ferromagnetism in high-temperature superconductor-ferromagnet structures. Phys. Rev. Lett. 102(7), 077002–077006 (2009)

    Article  Google Scholar 

  121. R. Werner, C. Raisch, A. Ruosi, et al., YBa2Cu3O7/La0.7Ca0.3MnO3 bilayers: interface coupling and electric transport properties. Phys. Rev. B 82(22), 224509–224516 (2010)

    Article  Google Scholar 

  122. J. Chakhalian, J.W. Freeland, H.-U. Habermeier, et al., Orbital reconstruction and covalent bonding at an oxide interface. Science 318(5853), 1114–1117 (2007)

    Article  Google Scholar 

  123. G. M. De Luca, G, Ghiringhelli, C. A. Perroni, et al., “Ubiquitous long-range antiferromagnetic coupling across the interface between superconducting and ferromagnetic oxides,” Nat. Commun., vol. 5, no. 6, pp. 5626-5633, 2014.

    Google Scholar 

  124. L.F. Kourkoutis, J. Chakhalian, B. Gray, et al., Visualizing short-range charge transfer at the interfaces between ferromagnetic and superconducting oxides. Nat. Commun. 4(4), 2336–2343 (2013)

    Google Scholar 

  125. J.L. MacManus-Driscoll, S.R. Foltyn, Q.X. Jia, et al., Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7-x + BaZrO3. Nat. Mater. 3(7), 439–443 (2004)

    Article  Google Scholar 

  126. S. Kang, A. Goyal, J. Li, et al., High-performance high-Tc superconducting wires. Science 311(5769), 1911–1914 (2006)

    Article  Google Scholar 

  127. J. Gutiérrez, A. Llordes, J. Gazquez, et al., Strong isotropic flux pinning in solution-derived YBa2Cu3O7-x nanocomposite superconductor films. Nat. Mater. 6(5), 367–373 (2007)

    Article  Google Scholar 

  128. B. Maiorov, S. A. Baily, H, Zhou, et al., “Synergetic combination of different types of defect to optimize pinning landscape using BaZrO3-doped YBa2Cu3O7,” Nat. Mater., vol. 8, no. 5, pp. 398-404, 2009.

    Google Scholar 

  129. C. Cantoni, Y. Gao, S.H. Wee, et al., Strain-driven oxygen deficiency in self-assembled, nanostructured, composite oxide films. ACS Nano 5(6), 4783–4789 (2011)

    Article  Google Scholar 

  130. S.H. Wee, Y. Gao, Y.L. Zuev, et al., Self-assembly of nanostructured, complex, multication films via spontaneous phase separation and strain-driven ordering. Adv. Funct. Mater. 23(15), 1912–1918 (2013)

    Article  Google Scholar 

  131. M. Dawber, E. Bousquet, New developments in artificially layered ferroelectric oxide superlattices. MRS Bull. 38(12), 1048–1055 (2013)

    Article  Google Scholar 

  132. H.N. Lee, H.M. Christen, M.F. Chisholm, et al., Strong polarization enhancement in asymmetric three-component ferroelectric superlattices. Nature 433(7024), 395–399 (2005)

    Article  Google Scholar 

  133. E. Bousquet, M. Dawber, N. Stucki, et al., Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 452(7188), 732–736 (2008)

    Article  Google Scholar 

  134. C.H. Ahn, K.M. Rabe, J.M. Triscone, Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 303(5657), 488–491 (2004)

    Article  Google Scholar 

  135. P. Zubko, S. Gariglio, M. Gabay, et al., Interface physics in complex oxide heterostructures. Annu. Rev. Condens. Matter Phys. 2(1), 141–165 (2011)

    Article  Google Scholar 

  136. H. Tabata, H. Tanaka, T. Kawai, Formation of artificial BaTiO3/SrTiO3 superlattices using pulsed laser deposition and their dielectric properties. Appl. Phys. Lett. 65(15), 1970–1972 (1994)

    Article  Google Scholar 

  137. N. A. Pertsev, V. G. Kukhar, H. Kohlstedt, et al., Phase diagrams and physical properties of single-domain epitaxial Pb(Zr1−x Ti x )O3 thin films, Phys. Rev. B, vol. 67, no. 5, pp. 054107, Feb. 2003.

    Google Scholar 

  138. J. X. Zhang, D. G. Schlom, L. Q. Chen, et al., Tuning the remanent polarization of epitaxial ferroelectric thin films with strain, Appl. Phys. Lett., vol. 95, no. 12, pp. 122904, Sep 2009.

    Google Scholar 

  139. C. Ederer, N. A. Spaldin, Effect of epitaxial strain on the spontaneous polarization of thin film ferroelectrics, Phys. Rev. Lett., vol. 95, no. 25, pp. 257601, Dec. 2005.

    Google Scholar 

  140. M. D. Nguyen, M. Dekkers, E. Houwman, et al., Misfit strain dependence of ferroelectric and piezoelectric properties of clamped (001) epitaxial Pb(Zr0.52, Ti0.48)O3 thin films, Appl. Phys. Lett., vol. 99, no. 25, pp. 252904, Dec. 2011.

    Google Scholar 

  141. K.J. Choi, M. Biegalski, Y.L. Li, et al., Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306(5698), 1005–1009 (2004)

    Article  Google Scholar 

  142. J.H. Haeni, P. Irvin, W. Chang, et al., Room-temperature ferroelectricity in strained SrTiO3. Nature 430(7001), 758–761 (2004)

    Article  Google Scholar 

  143. D. G. Schlom, L. Q. Chen, C. B. Eom, et al., Strain tuning of ferroelectric thin films, Annu. Rev. Mater. Res. vol. 37, no. 126, pp. 589-626, May. 2007.

    Google Scholar 

  144. F.F. Ge, L. Bai, W.D. Wu, et al., The controllable growth of Co-BaTiO3 nanocomposite epitaxial film by laser molecular beam epitaxy. J. Cryst. Growth 312(16), 2489–2493 (2015)

    Google Scholar 

  145. F.F. Ge, X.M. Wang, L.H. Cao, et al., Self-organized Ni nanocrystal embedded in BaTiO3 epitaxial film. Nanoscale Res. Lett. 5(5), 834–838 (2010)

    Article  Google Scholar 

  146. Y.J. Wu, H.L. Wang, X.K. Ning, et al., Dielectric properties of Au-BaTiO3 nanocomposite films prepared by Sol-Gel method. J. Inorg. Mater. 30(2), 207–213 (2015)

    Article  Google Scholar 

  147. O.J. Lee, S.A. Harrington, A. Kursumovic, et al., Extremely high tunability and low loss in nanoscaffold ferroelectric films. Nano Lett. 12(8), 4311–4317 (2012)

    Article  Google Scholar 

  148. B. Houng, Tin doped indium oxide transparent conducting thin films containing silver nanoparticles by sol-gel technique. Appl. Phys. Lett. 87, 251922 (2005)

    Article  Google Scholar 

  149. H.L. Wang, Y. Bai, X.K. Ning, Z.J. Wang, Enhanced electrical properties in ferroelectric thin films on conductive Au-LaNiO3 nanocomposite electrodes via modulation of Schottky potential barrier. RSC Adv. 5(126), 104203–104209 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Shufang Wang, Mingjing Chen for collaborations. Xingkun thank the National Natural Science Foundation of China with Grant No. 11604073 and 51372064. The Nature Science Foundation for Distinguished Young Scholars of Hebei University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingkun Ning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ning, X. (2017). Microstructure of the Nanostructured Oxide Composite Thin Films and Its Functional Properties. In: Li, T., Liu, Z. (eds) Outlook and Challenges of Nano Devices, Sensors, and MEMS. Springer, Cham. https://doi.org/10.1007/978-3-319-50824-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50824-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50822-1

  • Online ISBN: 978-3-319-50824-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics