Skip to main content

Cooperative Control for DC Microgrids

  • Chapter
  • First Online:
Cooperative Synchronization in Distributed Microgrid Control

Part of the book series: Advances in Industrial Control ((AIC))

  • 1489 Accesses

Abstract

Similar to the control hierarchy of the AC systems, a hierarchical control structure is conventionally adopted for DC microgrid operation. The highest hierarchy, the tertiary control , is in charge of economical operation and coordination with the distribution system operator. It assigns the microgrid voltage to carry out the scheduled power exchange between the microgrid and the main grid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guerrero JM, Vasquez JC, Matas J, de Vincuña LG, Castilla M (2011) Hierarchical control of droop-controlled AC and DC microgrids—a general approach toward standardization. IEEE Trans Ind Electron 58:158–172

    Article  Google Scholar 

  2. Zhang L, Wang Y, Li H, Sun P (2012) Hierarchical coordinated control of DC microgrid with wind turbines. In: Proceedings of 38th annual conference IEEE Industrial Electronics Society (IECON), 2012, pp 3547–3552

    Google Scholar 

  3. Xu L, Chen D (2011) Control and operation of a DC microgrid with variable generation and energy storage. IEEE Trans Power Del 26(4):2513–2522

    Article  MathSciNet  Google Scholar 

  4. Yuen C, Oudalov A, Timbus A (2011) The provision of frequency control reserves from multiple microgrids. IEEE Trans Ind Electron 58(1):173–183

    Article  Google Scholar 

  5. Kanchev H, Lu D, Colas F, Lazarov V, Francois B (2011) Energy management and operational planning of a microgrid with a PV-based active generator for smart grid applications. IEEE Trans Ind Electron 58(10):4583–4592

    Article  Google Scholar 

  6. Chen C, Duan S, Cai T, Liu B, Hu G (2011) Optimal allocation and economic analysis of energy storage system in microgrids. IEEE Trans Power Electron 26(10):2762–2773

    Article  Google Scholar 

  7. Zhou T, Francois B (2011) Energy management and power control of a hybrid active wind generator for distributed power generation and grid integration. IEEE Trans Ind Electron 58(1):95–104

    Article  Google Scholar 

  8. Anand S, Fernandes BG, Guerrero JM (2013) Distributed control to ensure proportional load sharing and improve voltage regulation in low-voltage DC microgrids. IEEE Trans Power Electron 28(4):1900–1913

    Article  Google Scholar 

  9. Loh PC, Li D, Chai YK, Blaabjerg F (2013) Autonomous control of interlinking converter with energy storage in hybrid ac–dc microgrid. IEEE Trans Ind Appl 49(3):1374–1382

    Article  Google Scholar 

  10. Schönberger J, Duke R, Round SD (2006) DC-bus signaling: a distributed control strategy for a hybrid renewable Nanogrid. IEEE Trans Ind Electron 53(5):1453–1460

    Article  Google Scholar 

  11. Sun K, Zhang L, Xing Y, Guerrero JM (2011) A distributed control strategy based on DC bus signaling for modular photovoltaic generation systems with battery energy storage. IEEE Trans Power Electron 26(10):3032–3045

    Article  Google Scholar 

  12. Chen D, Xu L, Yao L (2013) DC voltage variation based autonomous control of DC microgrids. IEEE Trans Power Del 28(2):637–648

    Article  Google Scholar 

  13. Karlsson P, Svensson J (2003) DC bus voltage control for a distributed power system. IEEE Trans Power Electron 18(6):1405–1412

    Article  Google Scholar 

  14. Ito Y, Zhongqing Y, Akagi H (2004) DC microgrid based distribution power generation system. In: Proceedings of 4th international power electronics and motion control conference (IPEMC), 2004, pp 1740–1745

    Google Scholar 

  15. Loh PC, Li D, Chai YK, Blaabjerg F (2013) Autonomous operation of hybrid microgrid with AC and DC subgrids. IEEE Trans Power Electron 28(5):2214–2223

    Article  Google Scholar 

  16. Qiu W, Liang Z (2005) Practical design considerations of current sharing control for parallel VRM applications. In: Proceedings of 20th annual applied power electronics conference and exposition, 2005, pp 281–286

    Google Scholar 

  17. Guerrero JM, Hang L, Uceda J (2008) Control of distributed uninterruptible power supply systems. IEEE Trans Ind Electron 55(8):2845–2859

    Article  Google Scholar 

  18. Lu X, Sun K, Guerrero JM, Vasquez JC, Huang L (2014) State-of-charge balance using adaptive droop control for distributed energy storage systems in DC microgrid applications. IEEE Trans Ind Electron 61(6):2804–2815

    Article  Google Scholar 

  19. Ferreira RAF, Braga HAC, Ferreira AA, Barbosa PG (2012) Analysis of voltage droop control method for DC microgrids with Simulink: modeling and simulation. In: Proceedings of 10th IEEE/IAS international conference on industry applications (INDUSCON), 2012, pp 1–6

    Google Scholar 

  20. Lopes JAP, Moreira CL, Madureira AG (2006) Defining control strategies for microgrids islanded operation. IEEE Trans Power Syst 21(2):916–924

    Article  Google Scholar 

  21. Tuladhar A, Jin H, Unger T, Mauch K (2000) Control of parallel inverters in distributed AC power systems with consideration of line impedance effect. IEEE Trans Ind Appl 36(1):131–138

    Article  Google Scholar 

  22. Guerrero JM, Vicuña LG, Matas J, Castilla M, Miret J (2005) Output impedance design of parallel-connected UPS inverters with wireless load sharing control. IEEE Trans Ind Electron 52(4):1126–1135

    Article  Google Scholar 

  23. Marwali MN, Jung JW, Keyhani A (2004) Control of distributed generation systems—Part II: load sharing control. IEEE Trans Power Electron 19(6):1551–1561

    Article  Google Scholar 

  24. De Brabandere K, Bolsens B, Van Den Keybus J, Woyte A, Driesen J, Belmans R (2007) A voltage and frequency droop control method for parallel inverters. IEEE Trans Power Electron 22(4):1107–1115

    Article  Google Scholar 

  25. Mohamed Y, El-Saadany EF (2008) Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids. IEEE Trans Power Electron 23(6):2806–2816

    Article  Google Scholar 

  26. Lu X, Guerrero JM, Sun K, Vasquez JC (2014) An improved droop control method for DC microgrids based on low bandwidth communication with DC bus voltage restoration and enhanced current sharing accuracy. IEEE Trans Power Electron 29(4):1800–1812

    Article  Google Scholar 

  27. Anand S, Fernandes BG (2011) Steady state performance analysis for load sharing in DC distributed generation system. In: Proceedings of 10th international conference on environment and electrical engineering (EEEIC), 2011, pp 1–4

    Google Scholar 

  28. Li YW, Kao CN (2009) An accurate power control strategy for power-electronics-interfaced distributed generation units operation in a low voltage multi-bus microgrid. IEEE Trans Power Electron 24(12):2977–2988

    Article  Google Scholar 

  29. He J, Li YW (2011) Analysis, design and implementation of virtual impedance for power electronics interfaced distributed generation. IEEE Trans Ind Appl 47(6):2525–2538

    Article  Google Scholar 

  30. Qiu W, Liang Z (2005) Practical design considerations of current sharing control for parallel VRM applications. In: Proceedings of 20th annual applied power electronics conference and exposition, 2005, pp 281–286

    Google Scholar 

  31. Laaksonen H, Saari P, Komulainen R (2005) Voltage and frequency control of inverter based weak LV network microgrid. In: Proceedings of the international conference on future power systems, 2005, pp 1–6

    Google Scholar 

  32. Vandoorn TL, Meersman B, Degroote L, Renders B, Vandevelde L (2011) A control strategy for islanded microgrids with dc-link voltage control. IEEE Trans Power Del 26(2):703–713

    Article  Google Scholar 

  33. Meng L, Dragicevic T, Guerrero JM, Vasquez JC (2013) Optimization with system damping restoration for droop controlled dc-dc converters. In: Proceedings of IEEE energy conversion congress and exposition (ECCE), 2013, pp 65–72

    Google Scholar 

  34. Dragicevic T, Guerrero JM, Vasquez JC, Skrlec D (2014) Supervisory control of an adaptive-droop regulated DC microgrid with battery management capability. IEEE Trans Power Electron 29(2):695–706

    Article  Google Scholar 

  35. Shafiee Q, Guerrero JM, Vasquez JC (2014) Distributed secondary control for islanded microgrids—a novel approach. IEEE Trans Power Electron 29(2):1018–1031

    Article  Google Scholar 

  36. Nasirian V, Moayedi S, Davoudi A, Lewis FL (2015) Distributed cooperative control of DC microgrids. IEEE Trans Power Electron 30:2288–2303

    Article  Google Scholar 

  37. Olfati-Saber R, Murray RM (2004) Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans Autom Control 49(9):1520–1533

    Article  MathSciNet  Google Scholar 

  38. Spanos DP, Olfati-Saber R, Murray RM (2005) Dynamic consensus for mobile networks. In: Proceedings of 16th International Federation of Automatic Control (IFAC), 2005, pp 1–6

    Google Scholar 

  39. Furukawa M, Xu J, Shimizu Y, Kato Y (2008) Scratch-induced demagnetization of perpendicular magnetic disk. IEEE Trans Magn 44(11):3633–3636

    Article  Google Scholar 

  40. Sridharan V, Asadi H, Tahoori MB, Kaeli D (2006) Reducing data cache susceptibility to soft errors. IEEE Trans Dependable Secure Comput 3(4):353–364

    Article  Google Scholar 

  41. Erickson RW, Maksimovic D (2001) Fundamental of power electronics, 2nd edn. Kluwer, Norwell

    Book  Google Scholar 

  42. Nasirian V, Karimi Y, Davoudi A, Zolghadri MR, Ahmadian M, Moayedi S (2013) Dynamic model development and variable switching-frequency control for DCVM Cúk converters in PFC applications. IEEE Trans Ind Appl 49(6):2636–2650

    Article  Google Scholar 

  43. Nilsson D, Sannino A (2004) Efficiency analysis of low- and medium voltage DC distribution systems. In: Proceedings of IEEE Power Engineering Society general meeting, 2004, pp 2315–2321

    Google Scholar 

  44. Anand S, Fernandes BG (2010) Optimal voltage level for DC microgrids. In: Proceedings of 36th annual conference on IEEE Industrial Electronics Society (IECON), 2010, pp 3034–3039

    Google Scholar 

  45. Pavlovic T, Bjazic T, Ban Z (2013) Simplified averaged models of dc–dc power converters suitable for controller design and microgrid simulation. IEEE Trans Power Electron 28(7):3266–3275

    Article  Google Scholar 

  46. Qu Z (2009) Cooperative control of dynamical systems: applications to autonomous vehicles. Springer, New York

    MATH  Google Scholar 

  47. Nasirian V, Davoudi A, Lewis F, Guerrero J (2014) Distributed adaptive droop control for DC distribution systems. IEEE Trans Energy Conversion 29(4):944–956

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Bidram or Frank L. Lewis .

Appendix

Appendix

7.1.1 Dynamic Consensus

Following lemmas need to be studied before studying the dynamic consensus:

Lemma 7.1

[37]: Assume that the digraph G has a spanning tree . Then, the Laplacian matrix L has a simple eigen-value at the origin, i.e., \( \lambda_{1} = 0 \) , and other eigen-values lie in the Open Right Hand Plane (ORHP). In addition,

$$ \mathop {\lim }\limits_{t \to \infty } e^{{ - {\mathbf{L}}t}} = w_{r} w_{l}^{\text{T}} , $$
(7.50)

where \( w_{r} \in {\mathbb{R}}^{N \times 1} \) and \( w_{l}^{\text{T}} \in {\mathbb{R}}^{N \times 1} \) are the right and left eigen-vectors of L associated with \( \lambda_{1} = 0 \), respectively. It should be noted that \( w_{l}^{\text{T}} \) should be normalized with respect to \( w_{r} \) , i.e., \( w_{l}^{\text{T}} w_{r} = 1 \).

Lemma 7.2

Assume that the digraph G has a spanning tree and the Laplacian matrix, L , is balanced. Then,

$$ \mathop {\lim }\limits_{s \to 0} s(s{\mathbf{I}}_{N} + {\mathbf{L}})^{ - 1} = {\mathbf{Q}}. $$
(7.51)
$$ \mathop {\lim }\limits_{s \to 0} {\mathbf{L}}(s{\mathbf{I}}_{N} + {\mathbf{L}})^{ - 1} = \mathop {\lim }\limits_{s \to 0} (s{\mathbf{I}}_{N} + {\mathbf{L}})^{ - 1} {\mathbf{L}} = {\mathbf{I}}_{N} - {\mathbf{Q}}. $$
(7.52)

where Q is the averaging matrix defined in Sect. 7.1.3

Proof of Lemma 7.2: Assume a linear system of \( {\dot{\mathbf{x}}} = - {\mathbf{Lx}} \) with \( {\mathbf{x}}(0) \ne 0 \) and \( {\mathbf{x}} \in {\mathbb{R}}^{N \times 1} \). One can write

$$ {\mathbf{x}}(t) = e^{{ - {\mathbf{L}}t}} {\mathbf{x}}(0). $$
(7.53)

Or, equivalently, in the frequency domain,

$$ {\mathbf{X}} = (s{\mathbf{I}}_{N} + {\mathbf{L}})^{ - 1} {\mathbf{x}}(0). $$
(7.54)

Lemma 7.1 ensures that X is a type 1 vector; i.e., it has a single pole at the origin and all other poles lie in the OLHP. Thus, using the final value theorem,

$$ \mathop {\lim }\limits_{t \to \infty } {\mathbf{x}}(t) = \mathop {\lim }\limits_{s \to 0} s{\mathbf{X}} = \left( {\mathop {\lim }\limits_{s \to 0} s(s{\mathbf{I}}_{N} + {\mathbf{L}})^{ - 1} } \right){\mathbf{x}}(0). $$
(7.55)

On the other hand, by using Lemma 7.1, (7.53) yields to

$$ \mathop {\lim }\limits_{t \to \infty } {\mathbf{x}}(t) = \left( {\mathop {\lim }\limits_{t \to \infty } e^{{ - {\mathbf{L}}t}} } \right){\mathbf{x}}(0) = w_{r} w_{l}^{\text{T}} {\mathbf{x}}(0). $$
(7.56)

For any Laplacian matrix L, all row sums are equal to zero. Thus, \( w_{r} = \underline{{\mathbf{1}}} \). In addition, for any balanced L, all column sums are also equal to zero. Thus, \( w_{l} = (1/N)\underline{{\mathbf{1}}} \). Accordingly, (7.56) implies that

$$ \mathop {\lim }\limits_{t \to \infty } {\mathbf{x}}(t) = {\mathbf{Qx}}(0). $$
(7.57)

Comparing (7.55)–(7.57),

$$ \left( {\mathop {\lim }\limits_{s \to 0} s(s{\mathbf{I}}_{N} + {\mathbf{L}})^{ - 1} } \right){\mathbf{x}}(0) = {\mathbf{Qx}}(0). $$
(7.58)

Since (7.58) holds for all \( {\mathbf{x}}(0) \ne 0 \), one may conclude (7.51). In addition,

$$ {\mathbf{I}}_{N} = \mathop {\lim }\limits_{s \to 0} (s{\mathbf{I}}_{N} + {\mathbf{L}})(s{\mathbf{I}}_{N} + {\mathbf{L}})^{ - 1} = \mathop {\lim }\limits_{s \to 0} s(s{\mathbf{I}}_{N} + {\mathbf{L}})^{ - 1} + \mathop {\lim }\limits_{s \to 0} {\mathbf{L}}(s{\mathbf{I}}_{N} + {\mathbf{L}})^{ - 1} . $$
(7.59)

Comparing (7.51) with (7.59) concludes (7.52).

Theorem 7.1

Assume that the communication graph G , used in a cooperative control system, has a spanning tree and the associated Laplacian matrix, L , is balanced. Then, using the observer in (7.7), all the estimated averages in \( {\bar{\mathbf{v}}} \) converge to the true global average voltage .

Proof of Theorem 7.1: Equation (7.34) shows the global dynamic of the microgrid , when the cooperative controller is effective. It is assumed that the system parameters are, accordingly, designed to stabilize the microgrid. Thus, the resulting voltage vector, V, is a type 1 vector. Based on Lemma 7.1, all poles of the term \( s(s{\mathbf{I}}_{N} + {\mathbf{L}})^{ - 1} \) lie in the OLHP. It should be noted that if \( \lambda_{i} \) is an eigenvalue of L, then \( s = - \lambda_{i} \) is a pole of \( s(s{\mathbf{I}}_{N} + {\mathbf{L}})^{ - 1} \). The term s in \( s(s{\mathbf{I}}_{N} + {\mathbf{L}})^{ - 1} \) cancels the pole of \( (s{\mathbf{I}}_{N} + {\mathbf{L}})^{ - 1} \) at the origin. Thus, (7.7) implies that \( \overline{{\mathbf{V}}} \) is also a type 1 vector. Since both V and \( \overline{{\mathbf{V}}} \) are type 1, one may use the final value theorem

$$ \mathop {\lim }\limits_{t \to \infty } {\bar{\mathbf{v}}}(t) = \mathop {\lim }\limits_{s \to 0} s{\bar{\mathbf{V}}} = \mathop {\lim }\limits_{s \to 0} s(s{\mathbf{I}}_{N} + {\mathbf{L}})^{ - 1} (s{\mathbf{V}}). $$
(7.60)

Using Lemma 7.2,

$$ \mathop {\lim }\limits_{t \to \infty } {\bar{\mathbf{v}}}(t) = \mathop {\lim }\limits_{s \to 0} s(s{\mathbf{I}}_{N} + {\mathbf{L}})^{ - 1} \times \mathop {\lim }\limits_{s \to 0} (s{\mathbf{V}}) = {\mathbf{Q}} \times \mathop {\lim }\limits_{t \to \infty } {\mathbf{v}} = {\mathbf{Qv}}^{\text{ss}} = \left\langle {{\mathbf{v}}^{\text{ss}} } \right\rangle \underline{{\mathbf{1}}} . $$
(7.61)

Equation (7.61) implies that all estimations converge to the true global average voltage . In other words,

$$ \forall i:0 \le i \le N,\quad \mathop {\lim }\limits_{t \to \infty } \bar{v}_{i} (t) = \frac{1}{N}\sum\limits_{i = 1}^{N} {v_{i} (t)} . $$
(7.62)

7.1.2 Analysis of the Noise Cancelation Module

Following lemmas need to be studied before analyzing the noise cancelation module:

Lemma 7.3

For a given matrix \( {\mathbf{A}} \in {\mathbb{R}}^{N \times N} \) , if \( {\mathbf{I}}_{N} + {\mathbf{A}} \) is invertible then,

$$ ({\mathbf{I}}_{N} + {\mathbf{A}})^{ - 1} = {\mathbf{I}}_{N} - {\mathbf{A}}({\mathbf{I}}_{N} + {\mathbf{A}})^{ - 1} = {\mathbf{I}}_{N} - ({\mathbf{I}}_{N} + {\mathbf{A}})^{ - 1} {\mathbf{A}}. $$
(7.63)

Proof of Lemma 7.3: For a given matrix \( {\mathbf{A}} \in {\mathbb{R}}^{N \times N} \),

$$ ({\mathbf{I}}_{N} + {\mathbf{A}})^{ - 1} = ({\mathbf{I}}_{N} + {\mathbf{A}})^{ - 1} ({\mathbf{I}}_{N} + {\mathbf{A}}) - ({\mathbf{I}}_{N} + {\mathbf{A}})^{ - 1} {\mathbf{A}} = {\mathbf{I}}_{N} - ({\mathbf{I}}_{N} + {\mathbf{A}})^{ - 1} {\mathbf{A}}. $$

Lemma 7.4

For a given invertible matrix \( {\mathbf{A}} \in {\mathbb{R}}^{N \times N} \) if \( {\mathbf{I}}_{N} + {\mathbf{A}} \) is invertible then,

$$ ({\mathbf{I}}_{N} + {\mathbf{A}}^{ - 1} )^{ - 1} = {\mathbf{A}}({\mathbf{I}}_{N} + {\mathbf{A}})^{ - 1} = ({\mathbf{I}}_{N} + {\mathbf{A}})^{ - 1} {\mathbf{A}}. $$
(7.64)

Proof of Lemma 7.4: For a given invertible matrix \( {\mathbf{A}} \),

$$ ({\mathbf{I}}_{N} + {\mathbf{A}}^{ - 1} )^{ - 1} = ({\mathbf{AA}}^{ - 1} + {\mathbf{A}}^{ - 1} )^{ - 1} = \left( {({\mathbf{I}}_{N} + {\mathbf{A}}){\mathbf{A}}^{ - 1} } \right)^{ - 1} = {\mathbf{A}}({\mathbf{I}}_{N} + {\mathbf{A}})^{ - 1} . $$

Lemma 7.5

If L is a balanced Laplacian matrix, \( b > 0 \) , and \( {\mathbf{K}} = {\text{diag}}\{ k_{i} \} \) has positive diagonal elements then, \( {\mathbf{L}}^{\prime } = b{\mathbf{LK}}^{ - 1} {\mathbf{L}} \) is a balanced Laplacian matrix.

Proof of Lemma 7.5: The matrix L is said to be a Laplacian matrix if a communication graph exists with the associated Laplacian matrix L. Equivalently, a matrix is a Laplacian matrix if and only if \( {\mathbf{L}}\underline{{\mathbf{1}}} = {\mathbf{0}} \). A Laplacian matrix is balanced if it has all column sums of zero, i.e., \( \underline{{\mathbf{1}}}^{\text{T}} {\mathbf{L}} = {\mathbf{0}} \). Let L be a balanced Laplacian matrix and \( {\mathbf{L}}^{{\prime }} = b{\mathbf{LK}}^{ - 1} {\mathbf{L}} \), then

$$ {\mathbf{L}}^{{\prime }} \underline{{\mathbf{1}}} = b{\mathbf{LK}}^{ - 1} \left( {{\mathbf{L}}\underline{{\mathbf{1}}} } \right) = {\mathbf{0}}, $$
(7.65)

which implies that \( {\mathbf{L}}^{{\prime }} \) is a Laplacian matrix. On the other hand,

$$ \underline{{\mathbf{1}}}^{\text{T}} {\mathbf{L}}^{{\prime }} = b\left( {\underline{{\mathbf{1}}}^{\text{T}} {\mathbf{L}}} \right){\mathbf{K}}^{ - 1} {\mathbf{L}} = {\mathbf{0}}, $$
(7.66)

which shows that \( {\mathbf{L}}^{{\prime }} \) is also balanced.

Lemma 7.6

If L is a balanced Laplacian matrix, \( b > 0 \) , and \( {\mathbf{K}} = {\text{diag}}\{ k_{i} \} \) has positive diagonal elements then,

$$ \mathop {\lim }\limits_{s \to \infty } s\left( {s{\mathbf{I}}_{N} + \left( {s{\mathbf{I}}_{N} + b{\mathbf{L}}} \right){\mathbf{K}}^{ - 1} \left( {s{\mathbf{I}}_{N} + {\mathbf{L}}} \right)} \right)^{ - 1} = {\mathbf{Q}}{\mathbf{.}} $$
(7.67)
$$ \mathop {\lim }\limits_{s \to \infty } s\left( {{\mathbf{I}}_{N} + s\left( {s{\mathbf{I}}_{N} + {\mathbf{L}}} \right)^{ - 1} {\mathbf{K}}\left( {s{\mathbf{I}}_{N} + b{\mathbf{L}}} \right)^{ - 1} } \right)^{ - 1} = {\mathbf{I}}_{N} - {\mathbf{Q}}{\mathbf{.}} $$
(7.68)

Proof of Lemma 7.6: Let L be a balanced Laplacian matrix, \( b > 0 \), and \( {\mathbf{K}} = {\text{diag}}\left\{ {k_{i} } \right\} \) has positive diagonal elements. Then,

$$ \mathop {\lim }\limits_{s \to \infty } \left( {\left( {s{\mathbf{I}}_{N} + b{\mathbf{L}}} \right){\mathbf{K}}^{ - 1} \left( {s{\mathbf{I}}_{N} + {\mathbf{L}}} \right)} \right) = b{\mathbf{LK}}^{ - 1} {\mathbf{L}}. $$
(7.69)

Let us define \( {\mathbf{L}}^{{\prime }} = b{\mathbf{LK}}^{ - 1} {\mathbf{L}} \). Then, using (7.69),

$$ \mathop {\lim }\limits_{s \to 0} s\left( {s{\mathbf{I}}_{N} + \left( {s{\mathbf{I}}_{N} + b{\mathbf{L}}} \right){\mathbf{K}}^{ - 1} \left( {s{\mathbf{I}}_{N} + {\mathbf{L}}} \right)} \right)^{ - 1} = \mathop {\lim }\limits_{s \to 0} s\left( {s{\mathbf{I}}_{N} + {\mathbf{L}}^{{\prime }} } \right)^{ - 1} . $$
(7.70)

Lemma 7.5 ensures that \( {\mathbf{L}}^{{\prime }} \) is a balanced Laplacian matrix. Therefore, by applying Lemma 7.2 (7.51), one can write \( \lim_{s \to 0} s\left( {s{\mathbf{I}}_{N} + {\mathbf{L}}^{{\prime }} } \right)^{ - 1} = {\mathbf{Q}} \), which, together with (7.70), proves (7.67).

To study the second part of the Lemma, (7.68), one may note that for \( s \ne 0 \), \( s{\mathbf{I}}_{N} + b{\mathbf{L}} \) is invertible [46]. K is also invertible, and \( {\mathbf{K}}^{ - 1} = {\text{diag}}\left\{ {k_{i}^{ - 1} } \right\} \). Let us define

$$ \Gamma \triangleq \left( {{\mathbf{I}}_{N} + s\left( {s{\mathbf{I}}_{N} + {\mathbf{L}}} \right)^{ - 1} {\mathbf{K}}\left( {s{\mathbf{I}}_{N} + b{\mathbf{L}}} \right)^{ - 1} } \right)^{ - 1} . $$
(7.71)

Using Lemma 7.3,

$$ \Gamma = {\mathbf{I}}_{N} - s\left( {s{\mathbf{I}}_{N} + {\mathbf{L}}} \right)^{ - 1} {\mathbf{K}}\left( {s{\mathbf{I}}_{N} + b{\mathbf{L}}} \right)^{ - 1} \left( {{\mathbf{I}}_{N} + s\left( {s{\mathbf{I}}_{N} + {\mathbf{L}}} \right)^{ - 1} {\mathbf{K}}\left( {s{\mathbf{I}}_{N} + b{\mathbf{L}}} \right)^{ - 1} } \right)^{ - 1} . $$
(7.72)

Lemma 7.4 offers to further expand (7.72)

$$ \begin{aligned}\Gamma & = {\mathbf{I}}_{N} - s\left( {s{\mathbf{I}}_{N} + {\mathbf{L}}} \right)^{ - 1} {\mathbf{K}}\left( {s{\mathbf{I}}_{N} + b{\mathbf{L}}} \right)^{ - 1} \frac{1}{s}\left( {s{\mathbf{I}}_{N} + b{\mathbf{L}}} \right){\mathbf{K}}^{ - 1} \left( {s{\mathbf{I}}_{N} + {\mathbf{L}}} \right) \\ & \quad \times \left( {{\mathbf{I}}_{N} + \frac{1}{s}\left( {s{\mathbf{I}}_{N} + b{\mathbf{L}}} \right){\mathbf{K}}^{ - 1} \left( {s{\mathbf{I}}_{N} + {\mathbf{L}}} \right)} \right)^{ - 1} \\ & = {\mathbf{I}}_{N} - s\left( {s{\mathbf{I}}_{N} + \left( {s{\mathbf{I}}_{N} + b{\mathbf{L}}} \right){\mathbf{K}}^{ - 1} \left( {s{\mathbf{I}}_{N} + {\mathbf{L}}} \right)} \right)^{ - 1} . \\ \end{aligned} $$
(7.73)

By applying Lemma 7.6 (7.67)–(7.73), one can conclude \( \lim_{s \to 0}\Gamma = {\mathbf{I}}_{N} - {\mathbf{Q}} \).

Theorem 7.2

Assume that the communication graph G , used in a distributed control system, has a spanning tree , and the associated Laplacian matrix, L , is balanced. Then, using the total observer in (7.21)–(7.23), all the estimated averages in \( \overline{\text{v}} \) converge to the true global average voltage average.

Proof of Theorem 7.2: For any \( s \ne 0 \), \( s{\mathbf{I}}_{N} + b{\mathbf{L}} \) is invertible [46]. The integrator gain matrix, K, is also invertible, and \( {\mathbf{K}}^{ - 1} = {\text{diag}}\left\{ {k_{i}^{ - 1} } \right\} \). Thus, one can safely reformulate the total observer transfer function as

$$ \begin{aligned} {\mathbf{H}}_{\text{obs}}^{\text{F}} & = \left( {\left( {s{\mathbf{I}}_{N} + {\mathbf{L}}} \right) + s{\mathbf{K}}\left( {s{\mathbf{I}}_{N} + b{\mathbf{L}}} \right)^{ - 1} } \right)^{ - 1} \left( {\left( {s{\mathbf{I}}_{N} + {\mathbf{L}}} \right) + s{\mathbf{K}}\left( {s{\mathbf{I}}_{N} + b{\mathbf{L}}} \right)^{ - 1} } \right) - {\mathbf{L}} \\ & = {\mathbf{I}}_{N} - \left( {\left( {s{\mathbf{I}}_{N} + {\mathbf{L}}} \right) + s{\mathbf{K}}\left( {s{\mathbf{I}}_{N} + b{\mathbf{L}}} \right)^{ - 1} } \right)^{ - 1} {\mathbf{L}} \\ & = {\mathbf{I}}_{N} - \left( {\left( {s{\mathbf{I}}_{N} + {\mathbf{L}}} \right)\left( {{\mathbf{I}}_{N} + s\left( {s{\mathbf{I}}_{N} + {\mathbf{L}}} \right)^{ - 1} {\mathbf{K}}\left( {s{\mathbf{I}}_{N} + b{\mathbf{L}}} \right)^{ - 1} } \right)} \right)^{ - 1} {\mathbf{L}} \\ & = {\mathbf{I}}_{N} - \left( {{\mathbf{I}}_{N} + s\left( {s{\mathbf{I}}_{N} + {\mathbf{L}}} \right)^{ - 1} {\mathbf{K}}\left( {s{\mathbf{I}}_{N} + b{\mathbf{L}}} \right)^{ - 1} } \right)^{ - 1} \left( {s{\mathbf{I}}_{N} + {\mathbf{L}}} \right)^{ - 1} {\mathbf{L}}. \\ \end{aligned} $$
(7.74)

Using Lemma 7.2 (7.52) and Lemma 7.6 (7.68), the total observer DC gain can be found

$$ \mathop {\lim }\limits_{s \to 0} H_{\text{obs}}^{\text{F}} = {\mathbf{I}}_{N} - \left( {{\mathbf{I}}_{N} - {\mathbf{Q}}} \right)^{2} = 2{\mathbf{Q}} - {\mathbf{Q}}^{2} = {\mathbf{Q}}. $$
(7.75)

Therefore, for type 1 (DC and exponentially damping) disturbances , (7.21) yields to

$$ \begin{aligned} \mathop {\lim }\limits_{t \to \infty } \overline{{\mathbf{v}}} (t) & = \mathop {\lim }\limits_{s \to 0} {\mathbf{H}}_{\text{obs}}^{\text{F}} \times \mathop {\lim }\limits_{s \to 0} (s\overline{{\mathbf{V}}} ) \times \mathop {\lim }\limits_{s \to 0} {\mathbf{H}}_{\text{NC}} \times \mathop {\lim }\limits_{s \to 0} (s{\mathbf{D}}) \\ & = {\mathbf{Q}} \times \mathop {\lim }\limits_{t \to \infty } {\mathbf{v}} + 0 = {\mathbf{Qv}} = \left\langle {{\mathbf{v}}^{\text{ss}} } \right\rangle \underline{1} , \\ \end{aligned} $$
(7.76)

which proves the Theorem 7.2.

7.1.3 Microgrid Parameters

Each of the underlying buck converters has \( L = 2.64\;{\text{mH}} \) and \( C = 2.2\;{\text{mF}} \) and works with the switching frequency of \( F_{s} = 60\;{\text{kHz}} \). Transmission lines series impedances are \( Z_{12} = Z_{34} = Z_{b} \) and \( Z_{25} = Z_{35} = Z_{b} \), where the base impedance is \( Z_{b} = 0.5 + (50\;{{\upmu{\text{H}}}})s \). The circuit model of the line includes 22 nF of capacitance on either end. Impedances of the local loads are \( R = 30\;\Omega \) and \( R_{2} = R_{3} = R_{4} = 20\;\Omega \). Voltages of the (rectified) input DC sources are \( V_{{{\text{s}}1}} = V_{{{\text{s}}4}} = 80\;{\text{V}} \) and \( V_{\text{s2}} = V_{\text{s3}} = 100\;{\text{V}} \). The control parameters are as follow:

$$ {\mathbf{I}}_{\text{rated}} = {\text{diag}}\{ 6,3,3,6\} , $$
(7.77)
$$ {\mathbf{A}}_{{\mathbf{G}}} = \left[ {\begin{array}{*{20}c} 0 & {90} & 0 & {110} \\ {90} & 0 & {100} & 0 \\ 0 & {100} & 0 & {120} \\ {110} & 0 & {120} & 0 \\ \end{array} } \right],\quad {\mathbf{r}}\left[ {\begin{array}{*{20}c} {0.5} & 0 & 0 & 0 \\ 0 & {1.0} & 0 & 0 \\ 0 & 0 & {1.0} & 0 \\ 0 & 0 & 0 & {0.5} \\ \end{array} } \right], $$
(7.78)
$$ b = 1,\quad c = 0.075, $$
(7.79)
$$ {\mathbf{H}}_{\text{p}} = \left[ {\begin{array}{*{20}c} {0.1} & 0 & 0 & 0 \\ 0 & {0.09} & 0 & 0 \\ 0 & 0 & {0.08} & 0 \\ 0 & 0 & 0 & {0.11} \\ \end{array} } \right],\quad {\mathbf{H}}_{\text{I}} = \left[ {\begin{array}{*{20}c} 6 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & {5.4} & 0 \\ 0 & 0 & 0 & {5.6} \\ \end{array} } \right], $$
(7.80)
$$ {\mathbf{G}}_{\text{p}} = \left[ {\begin{array}{*{20}c} {1.1} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & {1.2} & 0 \\ 0 & 0 & 0 & {1.1} \\ \end{array} } \right],\quad {\mathbf{G}}_{\text{I}} = \left[ {\begin{array}{*{20}c} 7 & 0 & 0 & 0 \\ 0 & {7.4} & 0 & 0 \\ 0 & 0 & {6.6} & 0 \\ 0 & 0 & 0 & 7 \\ \end{array} } \right], $$
(7.81)
$$ {\mathbf{K}}_{\text{p}} = \left[ {\begin{array}{*{20}c} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \\ \end{array} } \right]. $$
(7.82)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bidram, A., Nasirian, V., Davoudi, A., Lewis, F.L. (2017). Cooperative Control for DC Microgrids. In: Cooperative Synchronization in Distributed Microgrid Control. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-50808-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50808-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50807-8

  • Online ISBN: 978-3-319-50808-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics