Skip to main content

Control and Modeling of Microgrids

  • Chapter
  • First Online:

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

In this chapter, the control objectives in AC and DC microgrids are discussed separately. This chapter brings together the existing AC and DC microgrid control schemes. Based on the desired control objectives, mathematical models are presented for DGs. These mathematical models are the key elements in designing control schemes for microgrids .

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bidram A, Davoudi A (2012) Hierarchical structure of microgrids control system. IEEE Trans Smart Grid 3:1963–1976

    Article  Google Scholar 

  2. Guerrero JM, Matas J, Vicuna LGD, Castilla M, Miret J (2007) Decentralized control for parallel operation of distributed generation inverters using resistive output impedance. IEEE Trans Ind Electron 54:994–1004

    Article  Google Scholar 

  3. Guerrero JM, Vicuna LGD, Matas J, Castilla M, Miret J (2005) Output impedance design of parallel-connected UPS inverters with wireless load-sharing control. IEEE Trans Ind Electron 52:1126–1135

    Article  Google Scholar 

  4. Katiraei F, Iravani MR, Lehn PW (2005) Microgrid autonomous operation during and subsequent to islanding process. IEEE Trans Power Del 20:248–257

    Article  Google Scholar 

  5. Katiraei F, Iravani MR (2005) Power management strategies for a microgrid with multiple distributed generation units. IEEE Trans Power Syst 21:1821–1831

    Article  Google Scholar 

  6. Lopes JAP, Moreira CL, Madureira AG (2006) Defining control strategies for microgrids islanded operation. IEEE Trans Power Syst 21:916–924

    Article  Google Scholar 

  7. Guerrero JM, Vásquez JC, Matas J, Castilla M, Vicuña LGD, Castilla M (2011) Hierarchical control of droop-controlled AC and DC microgrids-A general approach toward standardization. IEEE Trans Ind Electron 58:158–172

    Google Scholar 

  8. Prodanović M, Green TC (2006) High-quality power generation through distributed control of a power park microgrid. IEEE Trans Ind Electron 53:1471–1482

    Article  Google Scholar 

  9. Pogaku N, Prodanovic M, Green TC (2007) Modeling, analysis and testing of autonomous operation of an inverter-based microgrid. IEEE Trans Power Electron 22:613–625

    Article  Google Scholar 

  10. Diaz G, Gonzalez-Moran C, Gomez-Aleixandre J, Diez A (2010) Scheduling of droop coefficients for frequency and voltage regulation in isolated microgrids. IEEE Trans Power Syst 25:489–496

    Article  Google Scholar 

  11. Rokrok E, Golshan MEH (2010) Adaptive voltage droop method for voltage source inverters in an islanded multibus microgrid. IET Gen Trans Dist 4(5):562–578

    Google Scholar 

  12. Sao CK, Lehn W (2005) Autonomous load sharing of voltage source inverters. IEEE Trans Power Del 20:1009–1016

    Article  Google Scholar 

  13. Sao CK, Lehn W (2008) Control and power management of converter fed microgrids. IEEE Trans Power Syst 23:1088–1098

    Article  Google Scholar 

  14. Borup U, Blaabjerg F, Enjeti PN (2001) Sharing of nonlinear load in parallel-connected three-phase converters. IEEE Trans Ind Appl 37:1817–1823

    Article  Google Scholar 

  15. Zhong QC (2013) Harmonic droop controller to reduce the voltage harmonics of inverters. IEEE Trans Ind Electron 60:936–945

    Article  Google Scholar 

  16. Li Y, Li YW (2009) Virtual frequency-voltage frame control of inverter based low voltage microgrid. In: Proceedings of IEEE Electrical Power and Energy Conference, 2009, pp 1–6

    Google Scholar 

  17. Li Y, Li YW (2011) Power management of inverter interfaced autonomous microgrid based on virtual frequency-voltage frame. IEEE Trans Smart Grid 2:30–40

    Article  Google Scholar 

  18. Li Y, Vilathgamuwa DM, Loh PC (2004) Design, analysis, and real-time testing of a controller for multibus microgrid system. IEEE Trans Power Electron 19:1195–1204

    Article  Google Scholar 

  19. Guerrero JM, Matas J, Vicuna LGD, Castilla M, Miret J (2006) Wireless-control strategy for parallel operation of distributed generation inverters. IEEE Trans Ind Electron 53:1461–1470

    Google Scholar 

  20. Yao W, Chen M, Matas J, Guerrero JM, Qian Z (2011) Design and analysis of the droop control method for parallel inverters considering the impact of the complex impedance on the power sharing. IEEE Trans Ind Electron 58:576–588

    Article  Google Scholar 

  21. Mehrizi-Sani A, Iravani R (2010) Potential-function based control of a microgrid in islanded and grid-connected models. IEEE Trans Power Syst 25:1883–1891

    Article  Google Scholar 

  22. Kwasinski A (2011) Quantitative evaluation of dc Microgrids availability: effects of system architecture and converter topology design choices. IEEE Trans Power Electron 26(3):835–851

    Article  Google Scholar 

  23. Tuladhar A, Jin H, Unger T, Mauch K (2000) Control of parallel inverters in distributed AC power systems with consideration of line impedance effect. IEEE Trans Ind Appl 36:131–138

    Article  Google Scholar 

  24. Ilic MD, Liu SX (1996) Hierarchical power systems control: Its value in a changing industry. Springer, London

    Book  Google Scholar 

  25. Savaghebi M, Jalilian A, Vasquez J, Guerrero J (2012) Secondary control scheme for voltage unbalance compensation in an islanded droop- controlled microgrid. IEEE Trans. Smart Grid 3:797–807

    Article  Google Scholar 

  26. Barklund E, Pogaku N, Prodanovic´ M, Hernandez-Aramburo C, Green TC (2008) Energy management in autonomous microgrid using stability-constrained droop control of inverters. IEEE Trans Power Electron 23:2346–2352

    Article  Google Scholar 

  27. Pantoja A, Quijano N (2011) A population dynamics approach for the dispatch of distributed generators. IEEE Trans Ind Electron 58:4559–4567

    Article  Google Scholar 

  28. Tanabe T et al (2007) Optimized operation and stabilization of microgrids with multiple energy resources. In: Proceedings of 7th International Conference on Power Electronics, 2007, pp 74–78

    Google Scholar 

  29. Vanthournout K, Brabandere KD, Haesen E, Driesen J, Deconinck G, Belmans R (2005) Agora: Distributed tertiary control of distributed resources. In: Proceedings of 15th Power Systems Computation Conference, 2005, pp 1–7

    Google Scholar 

  30. Chen YK, Wu YC, Song CC, Chen YS (2013) Design and implementation of energy management system with fuzzy control for dc Microgrid systems. IEEE Trans Power Electron 28(4):1563–1570

    Article  Google Scholar 

  31. Ikebe H (2003) Power systems for telecommunications in the IT age. In: Proceedings of IEEE INTELEC, 2003, pp 1–8

    Google Scholar 

  32. Balog RS, Weaver W, Krein PT (2012) The load as an energy asset in a distributed dc Smartgrid architecture. IEEE Trans Smart Grid 3:253–260

    Article  Google Scholar 

  33. Bidram A, Davoudi A, Lewis FL, Guerrero JM (2013) Distributed cooperative secondary control of microgrids using feedback linearization. IEEE Trans Power Systems 28 (3):3462–3470

    Google Scholar 

  34. Bidram A, Davoudi A, Lewis F (2014) A multi-objective distributed control framework for islanded microgrids. IEEE Trans Ind Inform 10:1785–1798

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Bidram or Frank L. Lewis .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bidram, A., Nasirian, V., Davoudi, A., Lewis, F.L. (2017). Control and Modeling of Microgrids. In: Cooperative Synchronization in Distributed Microgrid Control. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-50808-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50808-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50807-8

  • Online ISBN: 978-3-319-50808-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics