Skip to main content

Non-Markovian epidemics

  • Chapter
  • First Online:
Mathematics of Epidemics on Networks

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 46))

Abstract

Early studies of non-Markovian epidemics focused on SIR dynamics on fully connected networks, or homogeneously mixing populations, with the infection process being Markovian but with the infectious period taken from a general distribution [8, 278, 292, 293]. These approaches use probability theory arguments and typically focus on characterising the distribution of final epidemic sizes for finite populations, or on the average size in the infinite population limit. Similarly, the quasi-stationary distribution in a stochastic SIS model, again in a fully connected network, has been the subject of many studies [66, 230, 231]. More recently, it has been shown that one can readily apply results from queueing [19] or branching process [233] theory, or use martingales [65] to cast the same questions within a different framework and obtain results more readily.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ball, F.: A unified approach to the distribution of total size and total area under the trajectory of infectives in epidemic models. Adv. Appl. Probab. 18 (2), 289–310 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ball, F., Britton, T., Neal, P.: On expected durations of birth-death processes, with applications to branching processes and SIS epidemics. J. Appl. Probab. 53 (1), 203–215 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauch, C.T., Lloyd-Smith, J.O., Coffee, M.P., Galvani, A.P.: Dynamically modeling SARS and other newly emerging respiratory illnesses: past, present, and future. Epidemiology 16 (6), 791–801 (2005)

    Article  Google Scholar 

  4. Cator, E., van de Bovenkamp, R., Van Mieghem, P.: Susceptible-infected-susceptible epidemics on networks with general infection and cure times. Phys. Rev. E 87 (6), 062816 (2013)

    Article  Google Scholar 

  5. Clancy, D.: SIR epidemic models with general infectious period distribution. Stat. Probab. Lett. 85, 1–5 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Clancy, D., Mendy, S.T.: Approximating the quasi-stationary distribution of the SIS model for endemic infection. Methodol. Comput. Appl. Probab. 13 (3), 603–618 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Karrer, B., Newman, M.E.J.: Message passing approach for general epidemic models. Phys. Rev. E 82 (1), 016101 (2010)

    Article  MathSciNet  Google Scholar 

  8. Keeling, M.J.: The effects of local spatial structure on epidemiological invasions. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 266 (1421), 859–867 (1999)

    Article  Google Scholar 

  9. Keeling, M.J., Rohani, P.: Modeling Infectious Diseases in Humans and Animals. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  10. Kenah, E., Robins, J.M.: Second look at the spread of epidemics on networks. Phys. Rev. E 76 (3), 036113 (2007)

    Article  MathSciNet  Google Scholar 

  11. Kiss, I.Z., Röst, G., Vizi, Z.: Generalization of pairwise models to non-Markovian epidemics on networks. Phys. Rev. Lett. 115 (7), 078701 (2015)

    Article  Google Scholar 

  12. Lloyd, A.: Realistic distributions of infectious periods in epidemic models: changing patterns of persistence and dynamics. Theor. Popul. Biol. 60, 59–71 (2001)

    Article  Google Scholar 

  13. Ma, J., Earn, D.J.D.: Generality of the final size formula for an epidemic of a newly invading infectious disease. Bull. Math. Biol. 68 (3), 679–702 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Miller, J.C.: Epidemic size and probability in populations with heterogeneous infectivity and susceptibility. Phys. Rev. E 76 (1), 010101(R) (2007)

    Google Scholar 

  15. Miller, J.C.: Bounding the size and probability of epidemics on networks. J. Appl. Probab. 45, 498–512 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Miller, J.C.: A note on the derivation of epidemic final sizes. Bull. Math. Biol. 74 (9), 2125–2141 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nåsell, I.: The quasi-stationary distribution of the closed endemic SIS model. Adv. Appl. Probab. 28 (03), 895–932 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nåsell, I.: On the quasi-stationary distribution of the stochastic logistic epidemic. Math. Biosci. 156 (1), 21–40 (1999)

    Article  MathSciNet  Google Scholar 

  19. Neal, P.: Endemic behaviour of SIS epidemics with general infectious period distributions. Adv. Appl. Probab. 46 (1), 241–255 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Newman, M.E.J.: Spread of epidemic disease on networks. Phys. Rev. E 66 (1), 016128 (2002)

    Article  MathSciNet  Google Scholar 

  21. Pellis, L., House, T., Keeling, M.J.: Exact and approximate moment closures for non-Markovian network epidemics. J. Theor. Biol. 382, 160–177 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Riley, S., Fraser, C., Donnelly, C.A., Ghani, A.C., Abu-Raddad, L.J., Hedley, A.J., Leung, G.M., Ho, L.M., Lam, T.H., Thach, T.Q., Chau, P., Chan, K.P., Lo, S.V., Leung, P.Y., Tsang, T., Ho, W., Lee, K.H., Lau, E.M.C., Ferguson, N.M., Anderson, R.M.: Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions. Science 300 (5627), 1961–1966 (2003)

    Article  Google Scholar 

  23. Röst, G., Vizi, Z., Kiss, I.Z.: Impact of non-Markovian recovery on network epidemics. In: Biomat 2015: Proceedings of the International Symposium on Mathematical and Computational Biology. World Scientific, New York (2015)

    Google Scholar 

  24. Röst, G., Vizi, Z., Kiss, I.Z.: Pairwise approximation for SIR type network epidemics with non-Markovian recovery. arXiv preprint arXiv:1605.02933 (2016)

    Google Scholar 

  25. Sellke, T.: On the asymptotic distribution of the size of a stochastic epidemic. J. Appl. Probab. 20 (02), 390–394 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sherborne, N., Blyuss, K.B., Kiss, I.Z.: Dynamics of multi-stage infections on networks. Bull. Math. Biol. 77 (10), 1909–1933 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Startsev, A.N.: On the distribution of the size of an epidemic in a non-Markovian model. Theor. Probab. Appl. 41 (4), 730–740 (1997)

    Article  MATH  Google Scholar 

  28. Startsev, A.N.: Asymptotic analysis of the general stochastic epidemic with variable infectious periods. J. Appl. Probab. 38 (01), 18–35 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. van de Bovenkamp, R., Van Mieghem, P.: Survival time of the susceptible-infected-susceptible infection process on a graph. Phys. Rev. E 92 (3), 032806 (2015)

    Article  MathSciNet  Google Scholar 

  30. Van Mieghem, P., van de Bovenkamp, R.: Non-Markovian infection spread dramatically alters the susceptible-infected-susceptible epidemic threshold in networks. Phys. Rev. Lett. 110 (10), 108701 (2013)

    Article  Google Scholar 

  31. Wallinga, J., Lipsitch, M.: How generation intervals shape the relationship between growth rates and reproductive numbers. Proc. R. Soc. Lond. B: Biol. Sci. 274 (1609), 599–604 (2007)

    Article  Google Scholar 

  32. Wearing, H.J., Rohani, P., Keeling, M.J.: Appropriate models for the management of infectious diseases. PLoS Med. 2 (7), 621 (2005)

    Article  Google Scholar 

  33. Wilkinson, R.R., Sharkey, K.J.: Message passing and moment closure for susceptible-infected-recovered epidemics on finite networks. Phys. Rev. E 89 (2), 022808-1-022808-6 (2014)

    Google Scholar 

  34. Wilkinson, R.R., Ball, F.G., Sharkey, K.J.: The relationships between message passing, pairwise, Kermack-McKendrick and stochastic SIR epidemic models. arXiv preprint arXiv:1605.03555 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kiss, I.Z., Miller, J.C., Simon, P.L. (2017). Non-Markovian epidemics. In: Mathematics of Epidemics on Networks. Interdisciplinary Applied Mathematics, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-50806-1_9

Download citation

Publish with us

Policies and ethics