Skip to main content

Dynamic and adaptive networks

  • Chapter
  • First Online:
  • 5168 Accesses

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 46))

Abstract

An important feature of many real-world networks is the transient nature of some interactions. Thus far, our models have explicitly assumed that the network is static. That is, we assume that the rate of partner turnover is so slow that we can ignore its impact on epidemic dynamics.Over the past decade, there has been tremendous progress in modelling and analysing disease spread in non-static networks, i.e. networks whose structure changes due to endogenous or exogenous factors, or because of the disease dynamics unfolding on the network. The terminology used to describe such networks is not standardised. We summarise some common terminology and link it to the relation between the time scales of the dynamics on the network and the dynamics of the network. Ordered from static to networks that change quickly, we have:

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bansal, S., Read, J., Pourbohloul, B., Meyers, L.A.: The dynamic nature of contact networks in infectious disease epidemiology. J. Biol. Dyn. 4 (5), 478–489 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Grindrod, P., Higham, D.J.: Evolving graphs: dynamical models, inverse problems and propagation. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 466 (2115), 753–770 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gross, T., Blasius, B.: Adaptive coevolutionary networks: a review. J. R. Soc. Interface 5 (20), 259–271 (2008)

    Article  Google Scholar 

  4. Gross, T., Kevrekidis, I.G.: Robust oscillations in SIS epidemics on adaptive networks: coarse graining by automated moment closure. EPL (Europhys. Lett.) 82 (3), 38004 (2008)

    Google Scholar 

  5. Gross, T., D’Lima, C.J.D., Blasius, B.: Epidemic dynamics on an adaptive network. Phys. Rev. Lett. 96 (20), 208701 (2006)

    Article  Google Scholar 

  6. Halliday, D.M., Rosenberg, J.R., Amjad, A.M., Breeze, P., Conway, B.A., Farmer, S.F.: A framework for the analysis of mixed time series/point process data—theory and application to the study of physiological tremor, single motor unit discharges and electromyograms. Progr. Biophys. Mol. Biol. 64 (2), 237–278 (1995)

    Article  Google Scholar 

  7. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519 (3), 97–125 (2012)

    Article  Google Scholar 

  8. Holme, P., Saramäki, J.: Temporal Networks. Springer, Berlin (2013)

    Book  Google Scholar 

  9. Juher, D., Ripoll, J., Saldaña, J.: Outbreak analysis of an SIS epidemic model with rewiring. J. Math. Biol. 67 (2), 411–432 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kiss, I.Z., Green, D.M., Kao, R.R.: The network of sheep movements within Great Britain: network properties and their implications for infectious disease spread. J. R. Soc. Interface 3 (10), 669–677 (2006)

    Article  Google Scholar 

  11. Kiss, I.Z., Berthouze, L., Taylor, T.J., Simon, P.L.: Modelling approaches for simple dynamic networks and applications to disease transmission models. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 468 (2141), 1332–1355 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Krings, G., Karsai, M., Bernhardsson, S., Blondel, V.D., Saramäki, J.: Effects of time window size and placement on the structure of an aggregated communication network. EPJ Data Sci. 1 (4), 1–16 (2012)

    Google Scholar 

  13. Leung, K.Y.: Dangerous connections: the spread of infectious diseases on dynamic networks. Ph.D. thesis, Utrecht University (2016)

    Google Scholar 

  14. Leung, K.Y., Kretzschmar, M., Diekmann, O.: SI infection on a dynamic partnership network: characterization of R 0. J. Math. Biol. 71 (1), 1–56 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lindquist, J., Ma, J., van den Driessche, P., Willeboordse, F.H.: Effective degree network disease models. J. Math. Biol. 62 (2), 143–164 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Marceau, V., Noël, P.A., Hébert-Dufresne, L., Allard, A., Dubé, L.J.: Adaptive networks: coevolution of disease and topology. Phys. Rev. E 82 (3), 036116 (2010)

    Article  MathSciNet  Google Scholar 

  17. Miller, J.C., Slim, A.C., Volz, E.M.: Edge-based compartmental modelling for infectious disease spread. J. R. Soc. Interface 9 (70), 890–906 (2012)

    Article  Google Scholar 

  18. Perra, N., Gonçalves, B., Pastor-Satorras, R., Vespignani, A.: Activity driven modeling of time varying networks. Sci. Rep. 2, Article No. 469, 1–7 (2012). doi:10.1038/srep00469

  19. Ribeiro, B., Perra, N., Baronchelli, A.: Quantifying the effect of temporal resolution on time-varying networks. Sci. Rep. 3, Article No. 3006, 1–5 (2013). doi:10.1038/srep03006 (2013)

  20. Risau-Gusmán, S., Zanette, D.H.: Contact switching as a control strategy for epidemic outbreaks. J. Theor. Biol. 257 (1), 52–60 (2009)

    Article  MathSciNet  Google Scholar 

  21. Rogers, T., Clifford-Brown, W., Mills, C., Galla, T.: Stochastic oscillations of adaptive networks: application to epidemic modelling. J. Stat. Mech.: Theor. Exp. 2012 (08), P08018 (2012)

    Google Scholar 

  22. Saramäki, J., Kaski, K.: Modelling development of epidemics with dynamic small-world networks. J. Theor. Biol. 234 (3), 413–421 (2005)

    Article  MathSciNet  Google Scholar 

  23. Sélley, F., Besenyei, Á., Kiss, I.Z., Simon, P.L.: Dynamic control of modern, network-based epidemic models. SIAM J. Appl. Dyn. Syst. 14 (1), 168–187 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shkarayev, M.S., Tunc, I., Shaw, L.B.: Epidemics with temporary link deactivation in scale-free networks. J. Phys. A: Math. Theor. 47 (45), 455006 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Simon, P.L., Kiss, I.Z.: Super compact pairwise model for SIS epidemic on heterogeneous networks. J. Complex Netw. 4 (2), 187–200 (2016). doi:https://doi.org/10.1093/comnet/cnv018

  26. Szabó, A., Simon, P.L., Kiss, I.Z.: Detailed study of bifurcations in an epidemic model on a dynamic network. Differ. Equ. Appl. 4, 277–296 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Szabó-Solticzky, A., et al.: Oscillating epidemics in a dynamic network model: stochastic and mean-field analysis. J. Math. Biol. 72 (5), 1153–1176 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Taylor., M., Taylor, T.J., Kiss, I.Z.: Epidemic threshold and control in a dynamic network. Phys. Rev. E 85, 016103 (2012)

    Google Scholar 

  29. Tunc, I., Shkarayev, M.S., Shaw, L.B.: Epidemics in adaptive social networks with temporary link deactivation. J. Stat. Phys. 151 (1–2), 355–366 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Volz, E.M., Meyers, L.A.: Susceptible–infected–recovered epidemics in dynamic contact networks. Proc. R. Soc. Lond. B: Biol. Sci. 274 (1628), 2925–2934 (2007)

    Article  Google Scholar 

  31. Youssef, M., Scoglio, C.: Mitigation of epidemics in contact networks through optimal contact adaptation. Math. Biosci. Eng. 10 (4), 1227–1251 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kiss, I.Z., Miller, J.C., Simon, P.L. (2017). Dynamic and adaptive networks. In: Mathematics of Epidemics on Networks. Interdisciplinary Applied Mathematics, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-50806-1_8

Download citation

Publish with us

Policies and ethics