Skip to main content

Mean-field approximations for heterogeneous networks

  • Chapter
  • First Online:
  • 5221 Accesses

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 46))

Abstract

Section 4.5 showed that the homogeneous mean-field approximations cannot capture the system behaviour for networks with heterogeneous degree distributions. The heterogeneity in degree can significantly affect disease dynamics [254]. This requires more sophisticated models. In this chapter, we formulate mean-field models in terms of population-level counts of the number of nodes with a given degree and status.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Allard, A., Noël, P.A., Dubé, L.J., Pourbohloul, B.: Heterogeneous bond percolation on multitype networks with an application to epidemic dynamics. Phys. Rev. E 79 (3), 036113 (2009)

    Article  Google Scholar 

  2. Anderson, R.M., May, R.M.: Infectious Diseases of Humans: Dynamics and Control, vol. 1. Oxford University Press, Oxford (1991)

    Google Scholar 

  3. Ball, F., Neal, P.: Network epidemic models with two levels of mixing. Math. Biol. 212 (1), 69–87 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Barthélemy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A.: Dynamical patterns of epidemic outbreaks in complex heterogeneous networks. J. Theor. Biol. 235 (2), 275–288 (2005)

    Article  MathSciNet  Google Scholar 

  5. Battiston, F., Nicosia, V., Latora, V.: Structural measures for multiplex networks. Phys. Rev. E 89 (3), 032804 (2014)

    Article  Google Scholar 

  6. Boccaletti, S., Bianconi, G., Criado, R., Del Genio, C.I., Gómez-Gardeñes, J., Romance, M., Sendiña-Nadal, I., Wang, Z., Zanin, M.: The structure and dynamics of multilayer networks. Phys. Rep. 544 (1), 1–122 (2014)

    Google Scholar 

  7. Boguñá, M., Pastor-Satorras, R.: Epidemic spreading in correlated complex networks. Phys. Rev. E 66 (4), 047104 (2002)

    Article  Google Scholar 

  8. Boguñá, M., Pastor-Satorras, R., Vespignani, A.: Absence of epidemic threshold in scale-free networks with degree correlations. Phys. Rev. Lett. 90 (2), 028701 (2003)

    Article  MATH  Google Scholar 

  9. Boguñá, M., Castellano, C., Pastor-Satorras, R.: Nature of the epidemic threshold for the susceptible-infected-susceptible dynamics in networks. Phys. Rev. Lett. 111 (6), 068701 (2013)

    Article  Google Scholar 

  10. Castellano, C., Pastor-Satorras, R.: Thresholds for epidemic spreading in networks. Phys. Rev. Lett. 105 (21), 218701 (2010)

    Article  Google Scholar 

  11. Chatterjee, S., Durrett, R.: Contact processes on random graphs with power law degree distributions have critical value 0. Ann. Probab. 37 (6), 2332–2356 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cozzo, E., Banos, R.A., Meloni, S., Moreno, Y.: Contact-based social contagion in multiplex networks. Phys. Rev. E 88 (5), 050801 (2013)

    Article  Google Scholar 

  13. Eames, K.T.D., Keeling, M.J.: Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. Proc. Natl. Acad. Sci. 99 (20), 13330–13335 (2002)

    Article  Google Scholar 

  14. Ferreira, S.C., Castellano, C., Pastor-Satorras, R.: Epidemic thresholds of the susceptible-infected-susceptible model on networks: a comparison of numerical and theoretical results. Phys. Rev. E 86 (4), 041125 (2012)

    Article  Google Scholar 

  15. Fu, X., Small, M., Chen, G.: Propagation Dynamics on Complex Networks: Models, Methods and Stability Analysis. Wiley, Chichester (2013)

    MATH  Google Scholar 

  16. Funk, S., Jansen, V.A.A.: Interacting epidemics on overlay networks. Phys. Rev. E 81 (3), 036118 (2010)

    Article  Google Scholar 

  17. Funk, S., Gilad, E., Watkins, C., Jansen, V.A.A.: The spread of awareness and its impact on epidemic outbreaks. Proc. Natl. Acad. Sci. 106 (16), 6872–6877 (2009)

    Article  MATH  Google Scholar 

  18. Gleeson, J.P.: High-accuracy approximation of binary-state dynamics on networks. Phys. Rev. Lett. 107 (6), 068701 (2011)

    Article  Google Scholar 

  19. Gleeson, J.P.: Binary-state dynamics on complex networks: pair approximation and beyond. Phys. Rev. X 3 (2), 021004 (2013)

    Google Scholar 

  20. Granell, C., Gómez, S., Arenas, A.: Dynamical interplay between awareness and epidemic spreading in multiplex networks. Phys. Rev. Lett. 111 (12), 128701 (2013)

    Article  Google Scholar 

  21. Hatzopoulos, V., Taylor, M., Simon, P.L., Kiss, I.Z.: Multiple sources and routes of information transmission: implications for epidemic dynamics. Math. Biosci. 231 (2), 197–209 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hébert-Dufresne, L., Patterson-Lomba, O., Goerg, G.M., Althouse, B.M.: Pathogen mutation modeled by competition between site and bond percolation. Phys. Rev. Lett. 110, 108103 (2013)

    Article  Google Scholar 

  23. Hethcote, H.W., Yorke, J.A.: Gonorrhea Transmission Dynamics and Control. Lecture Notes in Biomathematics, vol. 56. Springer, Berlin/Heidelberg (1984)

    Google Scholar 

  24. Hethcote, H.W., Yorke, J.A., Nold, A.: Gonorrhea modeling: a comparison of control methods. Math. Biosci. 58 (1), 93–109 (1982)

    Article  MATH  Google Scholar 

  25. House, T., Keeling, M.: Insights from unifying modern approximations to infections on networks. J. R. Soc. Interface 8 (54), 67–73 (2011)

    Article  Google Scholar 

  26. Juher, D., Kiss, I.Z., Saldaña, J.: Analysis of an epidemic model with awareness decay on regular random networks. J. Theor. Biol. 365, 457–468 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kiss, I.Z., Green, D.M., Kao, R.R.: The effect of contact heterogeneity and multiple routes of transmission on final epidemic size. Math. Biosci. 203 (1), 124–136 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kiss, I.Z., Simon, P.L., Kao, R.R.: A contact-network-based formulation of a preferential mixing model. Bull. Math. Biol. 71 (4), 888–905 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kivelä, M., Arenas, A., Barthélemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2 (3), 203–271 (2014)

    Article  Google Scholar 

  30. Kurant, M., Thiran, P.: Layered complex networks. Phys. Rev. Lett. 96 (13), 138701 (2006)

    Article  Google Scholar 

  31. Lindquist, J., Ma, J., van den Driessche, P., Willeboordse, F.H.: Effective degree network disease models. J. Math. Biol. 62 (2), 143–164 (2011)

    Google Scholar 

  32. Marceau, V., Noël, P.A., Hébert-Dufresne, L., Allard, A., Dubé, L.J.: Adaptive networks: coevolution of disease and topology. Phys. Rev. E 82 (3), 036116 (2010)

    Article  MathSciNet  Google Scholar 

  33. Marceau, V., Noël, P.A., Hébert-Dufresne, L., Allard, A., Dubé, L.J.: Modeling the dynamical interaction between epidemics on overlay networks. Phys. Rev. E 84 (2), 026105 (2011)

    Article  Google Scholar 

  34. May, R.M., Anderson, R.M.: Transmission dynamics of HIV infection. Nature 326, 137 (1987)

    Article  Google Scholar 

  35. Miller, J.C., Slim, A.C., Volz, E.M.: Edge-based compartmental modelling for infectious disease spread. J. R. Soc. Interface 9 (70), 890–906 (2012)

    Article  Google Scholar 

  36. Moreno, Y., Pastor-Satorras, R., Vespignani, A.: Epidemic outbreaks in complex heterogeneous networks. Eur. Phys. J. B: Condens. Matter Complex Syst. 26 (4), 521–529 (2002)

    Google Scholar 

  37. Nold, A.: Heterogeneity in disease-transmission modeling. Math. Biosci. 52 (3), 227–240 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  38. Pastor-Satorras, R., Vespignani, A.: Epidemic dynamics and endemic states in complex networks. Phys. Rev. E 63 (6), 066117 (2001)

    Article  Google Scholar 

  39. Pastor-Satorras, R., Vespignani, A.: Epidemic dynamics in finite size scale-free networks. Phys. Rev. E 65 (3), 035108 (2002)

    Article  Google Scholar 

  40. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925 (2015)

    Google Scholar 

  41. Pourbohloul, B., Brunham, R.C.: Network models and transmission of sexually transmitted diseases. Sex. Transm. Dis. 31 (6), 388–390 (2004)

    Article  Google Scholar 

  42. Saumell-Mendiola, A., Serrano, M.Á.., Boguñá, M.: Epidemic spreading on interconnected networks. Phys. Rev. E 86 (2), 026106 (2012)

    Article  Google Scholar 

  43. Simon, P.L., Kiss, I.Z.: Super compact pairwise model for SIS epidemic on heterogeneous networks. J. Complex Netw. 4 (2), 187–200 (2016). doi:https://doi.org/10.1093/comnet/cnv018

  44. Taylor, T.J., Kiss, I.Z.: Interdependency and hierarchy of exact and approximate epidemic models on networks. J. Math. Biol. 69 (1), 183–211 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, H., Li, Q., D’Agostino, G., Havlin, S., Stanley, H.E., Van Mieghem, P.: Effect of the interconnected network structure on the epidemic threshold. Phys. Rev. E 88 (2), 022801 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kiss, I.Z., Miller, J.C., Simon, P.L. (2017). Mean-field approximations for heterogeneous networks. In: Mathematics of Epidemics on Networks. Interdisciplinary Applied Mathematics, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-50806-1_5

Download citation

Publish with us

Policies and ethics