Skip to main content

Mean-field approximations for homogeneous networks

  • Chapter
  • First Online:
Mathematics of Epidemics on Networks

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 46))

  • 5213 Accesses

Abstract

As seen in Chapters 2 and 3, because of the high-dimensionality of exact mathematical models describing spreading processes on networks, the models are often neither tractable nor numerically solvable for networks of realistic size. We can avoid this fundamental difficulty by refocusing our attention on expected population-scale quantities, such as the expected prevalence or the expected number of edges where one node is susceptible while the other is infectious. This opens up a range of possibilities to formulate so-called mean-field models (i.e. typically low-dimensional ODEs or PDEs) that are widespread in the physics and mathematical biology literature. These are used to approximate stochastic processes, with the potential to be exact in the large system or “thermodynamic” limit, see (for example, [151, 166, 167, 243] and the literature overview in Section 4.8).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, R.M., May, R.M.: Infectious Diseases of Humans: Dynamics and Control, vol. 1. Oxford University Press, Oxford (1991)

    Google Scholar 

  2. Artalejo, J.R.: On the time to extinction from quasi-stationarity: a unified approach. Phys. A: Stat. Mech. Appl. 391 (19), 4483–4486 (2012)

    Article  Google Scholar 

  3. Artalejo, J.R., Economou, A., Lopez-Herrero, M.J.: Stochastic epidemic models with random environment: quasi-stationarity, extinction and final size. J. Math. Biol. 67 (4), 799–831 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ball, F.G., Lyne, O.D.: Epidemics among a population of households. In: Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory, pp. 115–142. Springer, New York (2002)

    Google Scholar 

  5. Ball, F.G., Lyne, O.D.: Optimal vaccination policies for stochastic epidemics among a population of households. Math. Biosci. 177, 333–354 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ball, F., Sirl, D., Trapman, P.: Analysis of a stochastic SIR epidemic on a random network incorporating household structure. Math. Biosci. 224 (2), 53–73 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bauch, C.T.: The spread of infectious diseases in spatially structured populations: an invasory pair approximation. Math. Biosci. 198 (2), 217–237 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chatterjee, S., Durrett, R.: Contact processes on random graphs with power law degree distributions have critical value 0. Ann. Probab. 37 (6), 2332–2356 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Diekmann, O., Heesterbeek, J.A.P.: Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. Wiley, New York (2000)

    MATH  Google Scholar 

  10. Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J.: On the definition and the computation of the basic reproduction ratio \(\mathcal{R}_{0}\) in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28 (4), 365–382 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eames, K.T.D.: Modelling disease spread through random and regular contacts in clustered populations. Theor. Popul. Biol. 73 (1), 104–111 (2008)

    Article  MATH  Google Scholar 

  12. Eames, K.T.D., Keeling, M.J.: Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. Proc. Natl. Acad. Sci. 99 (20), 13330–13335 (2002)

    Article  Google Scholar 

  13. Eames, K.T.D., Keeling, M.J.: Contact tracing and disease control. Proc. R. Soc. Lond. B: Biol. Sci. 270 (1533), 2565–2571 (2003)

    Article  Google Scholar 

  14. Gleeson, J.P., Melnik, S., Hackett, A.: How clustering affects the bond percolation threshold in complex networks. Phys. Rev. E 81 (6), 066114 (2010)

    Article  MathSciNet  Google Scholar 

  15. Goldstein, E., Paur, K., Fraser, C., Kenah, E., Wallinga, J., Lipsitch, M.: Reproductive numbers, epidemic spread and control in a community of households. Math. Biosci. 221 (1), 11–25 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Green, D.M., Kiss, I.Z.: Large-scale properties of clustered networks: implications for disease dynamics. J. Biol. Dyn. 4 (5), 431–445 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. House, T., Keeling, M.J.: Deterministic epidemic models with explicit household structure. Math. Biosci. 213 (1), 29–39 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. House, T., Keeling, M.J.: The impact of contact tracing in clustered populations. PLoS Computat. Biol. 6 (3), e1000721 (2010)

    Article  MathSciNet  Google Scholar 

  19. House, T., Keeling, M.J.: Epidemic prediction and control in clustered populations. J. Theor. Biol. 272 (1), 1–7 (2011)

    Article  MathSciNet  Google Scholar 

  20. House, T., Keeling, M.: Insights from unifying modern approximations to infections on networks. J. R. Soc. Interface 8 (54), 67–73 (2011)

    Article  Google Scholar 

  21. House, T., Davies, G., Danon, L., Keeling, M.J.: A motif-based approach to network epidemics. Bull. Math. Biol. 71 (7), 1693–1706 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Karrer, B., Newman, M.E.J.: Random graphs containing arbitrary distributions of subgraphs. Phys. Rev. E 82 (6), 066118 (2010)

    Article  MathSciNet  Google Scholar 

  23. Keeling, M.J.: The effects of local spatial structure on epidemiological invasions. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 266 (1421), 859–867 (1999)

    Article  Google Scholar 

  24. Keeling, M.J., Eames, K.T.D.: Networks and epidemic models. J. R. Soc. Interface 2 (4), 295–307 (2005)

    Article  Google Scholar 

  25. Keeling, M.J., Ross, J.V.: On methods for studying stochastic disease dynamics. J. R. Soc. Interface 5 (19), 171–181 (2008)

    Article  Google Scholar 

  26. Keeling, M.J., Rand, D.A., Morris, A.J.: Correlation models for childhood epidemics. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 264 (1385), 1149–1156 (1997)

    Article  Google Scholar 

  27. Kiss, I.Z., Simon, P.L.: New moment closures based on a priori distributions with applications to epidemic dynamics. Bull. Math. Biol. 74 (7), 1501–1515 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Matsuda, H., Ogita, N., Sasaki, A., Satō, K.: Statistical mechanics of population the Lattice Lotka-Volterra Model. Progr. Theor. Phys. 88 (6), 1035–1049 (1992)

    Article  Google Scholar 

  29. Miller, J.C.: Percolation and epidemics in random clustered networks. Phys. Rev. E 80 (2), 020901(R) (2009)

    Google Scholar 

  30. Miller, J.C.: Spread of infectious disease through clustered populations. J. R. Soc. Interface 6 (41), 1121–1134 (2009)

    Article  Google Scholar 

  31. Nagy, N., Kiss, I.Z., Simon, P.L.: Approximate master equations for dynamical processes on graphs. Math. Modell. Nat. Phenom. 9 (02), 43–57 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nåsell, I.: The quasi-stationary distribution of the closed endemic SIS model. Adv. Appl. Probab. 28 (03), 895–932 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Newman, M.E.J.: Random graphs with clustering. Phys. Rev. Lett. 103 (5), 058701 (2009)

    Article  Google Scholar 

  34. Pastor-Satorras, R., Vespignani, A.: Epidemic dynamics and endemic states in complex networks. Phys. Rev. E 63 (6), 066117 (2001)

    Article  Google Scholar 

  35. Rand, D.A.: Advanced ecological theory: principles and applications. In: Correlation Equations and Pair Approximations for Spatial Ecologies, pp. 100–142. Blackwell Science, Oxford (1999)

    Google Scholar 

  36. Rattana, P., Blyuss, K.B., Eames, K.T.D., Kiss, I.Z.: A class of pairwise models for epidemic dynamics on weighted networks. Bull. Math. Biol. 75 (3), 466–490 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rattana, P., Miller, J.C., Kiss, I.Z.: Pairwise and edge-based models of epidemic dynamics on correlated weighted networks. Math. Modell. Nat. Phenom. 9 (02), 58–81 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ritchie, M., Berthouze, L., Kiss, I.Z.: Beyond clustering: mean-field dynamics on networks with arbitrary subgraph composition. J. Math. Biol. 72 (1–2), 255–281 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sharkey, K.J., Fernandez, C., Morgan, K.L., Peeler, E., Thrush, M., Turnbull, J.F., Bowers, R.G.: Pair-level approximations to the spatio-temporal dynamics of epidemics on asymmetric contact networks. J. Math. Biol. 53 (1), 61–85 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Simon, P.L., Taylor, M., Kiss, I.Z.: Exact epidemic models on graphs using graph-automorphism driven lumping. J. Math. Biol. 62 (4), 479–508 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Taylor, M., Simon, P.L., Green, D.M., House, T., Kiss, I.Z.: From Markovian to pairwise epidemic models and the performance of moment closure approximations. J. Math. Biol. 64 (6), 1021–1042 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Trapman, P.: On analytical approaches to epidemics on networks. Theor. Popul. Biol. 71 (2), 160–173 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Trapman, P.: Reproduction numbers for epidemics on networks using pair approximation. Math. Biosci. 210 (2), 464–489 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. van Baalen, M.: Pair approximations for different spatial geometries. In: The Geometry of Ecological Interactions: Simplifying Spatial Complexity, pp. 359–387. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  45. van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180 (1), 29–48 (2002)

    Google Scholar 

  46. Volz, E.M., Miller, J.C., Galvani, A., Meyers, L.A.: Effects of heterogeneous and clustered contact patterns on infectious disease dynamics. PLoS Comput. Biol. 7 (6), e1002042 (2011)

    Article  MathSciNet  Google Scholar 

  47. Wallinga, J., Lipsitch, M.: How generation intervals shape the relationship between growth rates and reproductive numbers. Proc. R. Soc. Lond. B: Biol. Sci. 274 (1609), 599–604 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kiss, I.Z., Miller, J.C., Simon, P.L. (2017). Mean-field approximations for homogeneous networks. In: Mathematics of Epidemics on Networks. Interdisciplinary Applied Mathematics, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-50806-1_4

Download citation

Publish with us

Policies and ethics