Skip to main content

Micro Cork Particles as Adhesive Reinforcement Material for Brittle Resins

  • Chapter
  • First Online:
Materials Design and Applications

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 65))

Abstract

Structural adhesives are progressively replacing conventional bonding methods, being constantly adopted for new applications. The most commonly used structural adhesives are epoxies due to their good mechanical, thermal and chemical properties, having a wide range of application. Epoxies are recognized for their high stiffness and strength, induced by their high degree of crosslinking. While the densely cross-linked molecular structure is responsible for the excellent properties of these materials, it also makes them inherently brittle, resulting in low ductility and toughness. Several researchers have, in the past decades, found necessary to mitigate this effect and developed new methods to increase the toughness of structural adhesives. There are many processes depicted in the literature on how to increase the toughness of adhesives. For example, the inclusion of particles (of nano or micro scale) is a successful technique to improve the toughness of structural adhesives. In this chapter, natural micro particles of cork are used with the objective of increasing the toughness of a brittle epoxy adhesive. The fundamental basis of this concept is for the cork particles to act like crack stoppers, leading to more energy absorption. An overview of how the micro cork particles can be used as reinforcement material for brittle resins is described. The main parameters that affect the mechanical properties of composite resin/cork, kinetic and chemical reactions between resin and cork and how this new material behaves in hygrothermal degradation, were analysed. It is concluded that the cork can be used as reinforcing material, promoting increased toughness of the adhesive without any chemical changes in the molecular structure or premature degradation of the adhesive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Packham, D.E.: Handbook of Adhesion. Wiley, England (2005)

    Book  Google Scholar 

  2. Adams, R.D.: Adhesive Bonding—Science. Technology and Applications. Woodhead Publishing Limited, Cambridge (2000)

    Google Scholar 

  3. Bucknall, C.B.: Toughened Plastics. Springer Science-Business Media, London (1977)

    Book  Google Scholar 

  4. Huang, Y., Hunston, D.L., Kinloch, A.J., Riew, C.K.: Mechanisms of toughening thermoset resins. In: Toughened Plastics I: Science and Engineering, pp. 1–35. American Chemical Society, Washington (1993)

    Google Scholar 

  5. Ramos, V.D., Costa, H.M., Soares, V.L.P., Nascimento, R.S.V.: Modification of epoxy resin: a comparison of different types of elastometer. Polym. Test 24(3), 387–394 (2005)

    Article  Google Scholar 

  6. Cardwell, B., Yee, A.F.: Toughening of epoxies through thermoplastic crack bridging. J. Mater. Sci. 33(22), 5473–5484 (1998)

    Article  Google Scholar 

  7. Tandon, G., Weng, G.: A theory of particle-reinforced plasticity. J. Appl. Mech. 55(1), 126–135 (1988)

    Article  Google Scholar 

  8. Martuscelli, E., Musto, P., Ragosta, G.: Advanced Routes for Polymer Toughening. Elsevier, Amsterdam (1996)

    Google Scholar 

  9. Gkikas, G., Barkoula, N.M., Paipetis, A.S.: Effect of dispersion conditions on the thermo-mechanical and toughness properties of multi walled carbon nanotubes-reinforced epoxy. Compos. B 43(6), 2697–2705 (2012)

    Article  Google Scholar 

  10. Barbosa, A.Q., da Silva, L.F.M., Banea, M.D., Öchsner, A.: Methods to increase the toughness of structural adhesives with micro particles: an overview with focus on cork particles. Materialwiss Werkst, 47(4), 307–325 (2016)

    Google Scholar 

  11. Lange, F.: The interaction of a crack front with a second-phase dispersion. Philos. Mag. 22(179), 0983–0992 (1970)

    Article  Google Scholar 

  12. Withers, G.J., Yu, Y., Khabashesku, V.N., Cercone, L., Hadjiev, V.G., Souza, J.M., Davi, D.C.: Improved mechanical properties of an epoxy glass–fiber composite reinforced with surface organomodified nanoclays. Compos. B 72, 175–182 (2015)

    Article  Google Scholar 

  13. Petrie, E.M.: Handbook of adhesives and sealants. The McGraw-Hill Companies Inc, New York (2000)

    Google Scholar 

  14. Pethrick, R.A.: Design and ageing of adhesives for structural adhesive bonding–a review. In: Proceedings of the Institution of Mechanical Engineers, Part L: J. Mater. Des. Appl., 1464420714522981 (2014)

    Google Scholar 

  15. Johnsen, B.B., Kinloch, A.J., Mohammed, R.D., Taylor, A.C.: Sprenger, S, Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer 48(2), 530–541 (2007)

    Article  Google Scholar 

  16. Oksman, K., Skrifvars, M., Selin, J.-F.: Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos. Sci. Technol. 63(9), 1317–1324 (2003)

    Article  Google Scholar 

  17. Hamza, T.A., Rosenstiel, S.F., Elhosary, M., Ibraheem, R.M.: The effect of fiber reinforcement on the fracture toughness and flexural strength of provisional restorative resins. J. Prosthet. Dentist. 91(3), 258–264 (2004)

    Article  Google Scholar 

  18. Barbosa, A.Q., da Silva, L.F.M., Öchsner, A., Abenojar, J., del Real, J.C.: Influence of the size and amount of cork particles on the impact toughness of a structural adhesive. J. Adhesion 88(4–6), 452–470 (2012)

    Article  Google Scholar 

  19. Barbosa, A.Q., da Silva, L.F.M., Abenojar, J., del Real, J.C., Paiva, R.M.M., Öchsner, A.: Kinetic analysis and characterization of an epoxy/cork adhesive. Thermochima Acta 604, 52–60 (2015)

    Article  Google Scholar 

  20. Barbosa, A.Q., da Silva, L.F.M., Öchsner, A., Abenojar, J., del Real, J.C.: Utilização de micro partículas de cortiça como material de reforço em adesivos estruturais frágeis. Ciência & Tecnologia dos Mater. 25(1), 42–49 (2013)

    Article  Google Scholar 

  21. Barbosa, A.Q., da Silva, L.F.M., Öchsner, A.: Hygrothermal aging of an adhesive reinforced with microparticles of cork. J. Adhes. Sci. Technol. 29(16), 1714–1732 (2015)

    Article  Google Scholar 

  22. Barbosa, A.Q., da Silva, L.F.M., Oechsner, A.: Effect of the amount of cork particles on the strength and glass transition temperature of a structural adhesive. Proc. Inst. Mech. Eng. L J. Mater. Des. Appl. 228(4), 323–333 (2013)

    Google Scholar 

  23. Fortes, M.A., Pereira, H.: A Cortiça. IST Press, Lisboa (2004)

    Google Scholar 

  24. Silva, S.P., Sabino, M.A., Fernandes, E.M., Correlo, V.M., Boesel, L.F., Reis, R.L.: Cork: properties, capabilities and applications. Int. Mater. Rev. 50(6), 345–365 (2005)

    Article  Google Scholar 

  25. Pereira, H.: Chemical composition and variability of cork from Quercus suber L. Wood Sci. Technol. 22(3), 211–218 (1988)

    Article  Google Scholar 

  26. Úbeda, X., Pereira, P., Outeiro, L., Martin, D.A.: Effects of fire temperature on the physical and chemical characteristics of the ash from two plots of cork oak (Quercus suber). Land Degrad. Dev. 20(6), 589–608 (2009)

    Article  Google Scholar 

  27. Mano, J.F.: The viscoelastic properties of cork. J. Mater. Sci. 37(2), 257–263 (2002)

    Article  Google Scholar 

  28. Gil, L.: Cortiça: produção, tecnologia e aplicação. INETI, Lisboa (1998)

    Google Scholar 

  29. Gil, L.: New cork-based materials and applications. Materials 8(2), 625–637 (2015)

    Article  Google Scholar 

  30. Gil, L.: Cork composites: a review. Materials 2(3), 776–789 (2009)

    Article  Google Scholar 

  31. Abdallah, F.B., Cheikh, R.B., Baklouti, M., Denchev, Z., Cunha, A.M.: Effect of surface treatment in cork reinforced composites. J. Polym. Res. 17(4), 519–528 (2010)

    Article  Google Scholar 

  32. Singh, R., Zhang, M., Chan, D.: Toughening of a brittle thermosetting polymer: effects of reinforcement particle size and volume fraction. J. Mater. Sci. 37(4), 781–788 (2002)

    Article  Google Scholar 

  33. Kitey, R., Tippur, H.: Role of particle size and filler–matrix adhesion on dynamic fracture of glass-filled epoxyI. Macromeasurements. Acta Mater. 53(4), 1153–1165 (2005)

    Article  Google Scholar 

  34. Lauke, B.: On the effect of particle size on fracture toughness of polymer composites. Compos. Sci. Technol. 68(15), 3365–3372 (2008)

    Article  Google Scholar 

  35. Fu, S.-Y.: Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos. B Eng. 39(6), 933–961 (2008)

    Article  Google Scholar 

  36. Nakamura, Y., Yamaguchi, M., Okubo, M., Matsumoto, T.: Effects of particle size on mechanical and impact properties of epoxy resin filled with spherical silica. J. Appl. Polym. Sci. 45(7), 1281–1289 (1992)

    Article  Google Scholar 

  37. Kim, B.C., Park, S.W.: Fracture toughness of the nano-particle reinforced epoxy composite. Compos. Struct. 86(1), 69–77 (2008)

    Article  Google Scholar 

  38. Azimi, H., Pearson, R., Hertzberg, R.: Fatigue of rubber-modified epoxies: effect of particle size and volume fraction. J. Mater. Sci. 31(14), 3777–3789 (1996)

    Article  Google Scholar 

  39. Rothon, R.: Particulate-Filled Polymer Composites. iSmithers Rapra Publishing (2003)

    Google Scholar 

  40. Nakamura, Y., Yamaguchi, M., Kitayama, A., Okubo, M., Matsumoto, T.: Effect of particle size on fracture toughness of epoxy resin filled with angular-shaped silica. Polymer 32(12), 2221–2229 (1991)

    Article  Google Scholar 

  41. Bagheri, R., Marouf, B., Pearson, R.: Rubber-toughened epoxies: a critical review. J. Macromol. Sci., Part C: Polymer Rev. 49(3), 201–225 (2009)

    Google Scholar 

  42. Wrotecki, C., Heim, P., Gaillard, P.: Rubber toughening of poly (methyl methacrylate). Part II: effect of a twin population of particle size. Polym. Eng. Sci. 31(4), 218–222 (1991)

    Article  Google Scholar 

  43. Minfeng, Z., Xudong, S., Huiquan, X., Genzhong, J., Xuewen, J., Baoyi, W., Chenze, Q.: Investigation of free volume and the interfacial, and toughening behavior for epoxy resin/rubber composites by positron annihilation. Radiat. Phys. Chem. 77(3), 245–251 (2008)

    Article  Google Scholar 

  44. Huang, Y., Kinloch, A.: The toughness of epoxy polymers containing microvoids. Polymer 33(6), 1330–1332 (1992)

    Article  Google Scholar 

  45. Kinloch, A., Hunston, D.: Effect of volume fraction of dispersed rubbery phase on the toughness of rubber-toughened epoxy polymers. J. Mater. Sci. Lett. 6(2), 137–139 (1987)

    Article  Google Scholar 

  46. Herrera-Franco, P., Valadez-Gonzalez, A.: Mechanical properties of continuous natural fibre-reinforced polymer composites. Compos. A Appl. Sci. Manuf. 35(3), 339–345 (2004)

    Article  Google Scholar 

  47. Abenojar, J., Torregrosa-Coque, R., Martínez, M.A., Martín-Martínez, J.M.: Surface modifications of polycarbonate (PC) and acrylonitrile butadiene styrene (ABS) copolymer by treatment with atmospheric plasma. Surf. Coat. Technol. 203(16), 2173–2180 (2009)

    Article  Google Scholar 

  48. Abenojar, J., Martinez, M.A., Velasco, F., Pascual-Sanchez, V., Martin-Martinez, J.M.: Effect of boron carbide filler on the curing and mechanical properties of an epoxy resin. J. Adhes. 85(4–5), 216–238 (2009)

    Article  Google Scholar 

  49. Zhang, Y., Adams, R., da Silva, L.F.M.: Absorption and glass transition temperature of adhesives exposed to water and toluene. Int. J. Adhes. Adhes. 50, 85–92 (2014)

    Article  Google Scholar 

  50. Moy, P., Karasz, F.: The interactions of water with epoxy resins. Polym. Eng. Sci. 20(4), 315–319 (1980)

    Article  Google Scholar 

  51. Zhang, Y., Adams, R., da Silva, L.F.M.: Effects of curing cycle and thermal history on the glass transition temperature of adhesives. J. Adhes. 90(4), 327–345 (2014)

    Article  Google Scholar 

  52. Pavlidou, S., Papaspyrides, C.: The effect of hygrothermal history on water sorption and interlaminar shear strength of glass/polyester composites with different interfacial strength. Compos. A Appl. Sci. Manuf. 34(11), 1117–1124 (2003)

    Article  Google Scholar 

  53. Thwe, M.M., Liao, K.: Effects of environmental aging on the mechanical properties of bamboo–glass fiber reinforced polymer matrix hybrid composites. Compos. A Appl. Sci. Manuf. 33(1), 43–52 (2002)

    Article  Google Scholar 

  54. Fernández-García, M., Chiang, M.: Effect of hygrothermal aging history on sorption process, swelling, and glass transition temperature in a particle-filled epoxy-based adhesive. J. Appl. Polym. Sci. 84(8), 1581–1591 (2002)

    Article  Google Scholar 

  55. Ashcroft, I.A., Wahab, M.A., Crocombe, A.D., Hughes, D.J., Shaw, S.J.: The effect of environment on the fatigue of bonded composite joints. Part 1: testing and fractography. Compos. A Appl. Sci. Manuf. 32(1), 45–58 (2001)

    Article  Google Scholar 

  56. Wahab, M.A., Ashcroft, I.A., Crocombe, A.D., Hughes, D.J., Shaw, S.J.: The effect of environment on the fatigue of bonded composite joints. Part 2: fatigue threshold prediction. Compos. A Appl. Sci. Manuf. 32(1), 59–69 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support by Foundation for Science and Technology (PTDC/EME-TME/098752/2008 and SFRH/BD/88173/2012) are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. M. da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Barbosa, A.Q., da Silva, L.F.M., Öchsner, A., Marques, E.A.S., Abenojar, J. (2017). Micro Cork Particles as Adhesive Reinforcement Material for Brittle Resins. In: Silva, L. (eds) Materials Design and Applications. Advanced Structured Materials, vol 65. Springer, Cham. https://doi.org/10.1007/978-3-319-50784-2_30

Download citation

Publish with us

Policies and ethics