Skip to main content

Development and Validation of a Numerical Model for the Optimization of a Brace for Lower Limb

  • Chapter
  • First Online:
Materials Design and Applications

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 65))

Abstract

The orthopedic prosthesis, known as orthoses, are an external aid used for the correction of diseases which are the cause of a motor malfunction. Nowadays, the classification of different orthoses is performed by grouping them by type of apparatus that is subject to correction and on the basis of the length of the orthosis. In this study we analyze a specific orthosis of composite material, belonging to the AFO (Ankle-Foot-Orthosis) family. Passing through a process of “reverse engineering”, we define a non-linear computational model of the orthosis that describes the large displacement, the composite material, and the contact with the ground. The validation of the model against experimental tests, allows to use it to correlate the stiffness of the orthosis to its geometry, thus providing a useful tool to guide the structural improvements needed for adaptation to the patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perry, J.: Gait Analysis. Elsevier, Amsterdam, The Netherlands (2005)

    Google Scholar 

  2. Ferri, S.: Classificazione di pazienti affetti da diplegia infantile mediante cluster analysis. B.S. Thesis, University of Modena and Reggio Emilia, Reggio Emilia, Italy (2014). (In Italian)

    Google Scholar 

  3. Anderson, F.C., Pandy, M.G.: Individual muscle contribution to support in normal walking. Gait & Posture 17, 159–169 (2003)

    Article  Google Scholar 

  4. Harper, N.G., Esposito, E.R., Wilken, J.M., Neptune, R.R.: The influence of ankle-foot orthosis stiffness on walking performance in individuals with lower-limb impairments. Clin. Biomech. 29(8), 877–884 (2014)

    Article  Google Scholar 

  5. Rettig, O., Wolf, S., Doederlein, L.: Kinetics of a carbon spring AFO-orthosis and its influence on the kinetic of gait. Gait & Posture 18(Suppl. 2), 94 (2003)

    Google Scholar 

  6. Bartonek, A., Eriksson, M., Gutierrez-Farewik, E.M.: A new carbon fibre spring orthosis for children with plantarflexor weakness. Gait & Posture. 25, 652–656 (2007)

    Article  Google Scholar 

  7. Bregman, D.J.J., van der Krogt, M.M., de Groot, V., Harlaar, J., Wisse, M., Collins, S.H.: The effect of ankle foot orthosis stiffness on the energy cost of walking: a simulation study. Clin. Biomech. 26(9), 955–961 (2011)

    Article  Google Scholar 

  8. Syngellakis, S., Arnold, M.A.: Modelling considerations in finite element analyses of ankle foot orthoses. WIT Trans. Ecol. Environ. 160, 183–194 (2012)

    Google Scholar 

  9. Ginestra, P.S., Ceretti, E., Fiorentino, A.: Potential of modeling and simulations of bioengineered devices: Endoprostheses, prostheses and orthoses. Proc. Inst. Mech. Eng. 230(7), 607–638 (2016)

    Article  Google Scholar 

  10. Chu, T.-M., Reddy, N.P.: Stress distribution in the ankle-foot orthosis used to correct pathological gait. J. Rehabil. Res. Dev. 32(4), 349–360 (1995)

    Google Scholar 

  11. Chu, T.-M., Reddy, N.P., Padovan, J.: Three-dimensional finite element stress analysis of the polypropylene, ankle-foot orthosis: static analysis. Med. Eng. Phys. 17(5), 372–379 (1995)

    Article  Google Scholar 

  12. Papi, E., Maclean, J., Bowers, R.J., Solomonidis, S.E.: Determination of loads carried by polypropylene ankle-foot orthoses: a preliminary study. Proc. Inst. Mech. Eng. 229(1), 40–51 (2015)

    Article  Google Scholar 

  13. Copilusi, C., Dumitru, N., Margine, A.: Modular knee orthosis fem analysis from kinematic considerations. Mech. Mach. Sci. 7, 431–439 (2013)

    Article  Google Scholar 

  14. Lee, Y.-S., Choi, Y.-J., Kim, H.-S., Lee, H.-S., Cho, K.-H.: A study on the structural stress analysis of plastic ankle foot orthosis (AFO) under dorsiflexion and plantarflextion conditions. Int. J. Mod. Phys. B 20(25–27), 4559–4564 (2006)

    Article  Google Scholar 

  15. Zou, D., He, T., Dailey, M., Smith, K.E., Silva, M.J., Sinacore, D.R., Mueller, M.J., Hastings, M.K.: Experimental and computational analysis of composite ankle-foot orthosis. J. Rehabil. Res. Dev. 51(10), 1525–1536 (2014)

    Article  Google Scholar 

  16. Stier, B., Simon, J.-W., Reese, S.: Numerical and experimental investigation of the structural behavior of a carbon fiber reinforced ankle-foot orthosis. Med. Eng. Phys. 37(5), 505–511 (2015)

    Article  Google Scholar 

  17. Stier, B., Simon, J.-W., Reese, S.: Finite element analysis of layered fiber composite structures accounting for the material’s microstructure and delamination. Appl. Compos. Mater. 22(2), 171–187 (2015)

    Article  Google Scholar 

  18. Rhinoceros NURBS modeling for Windows, Robert McNeel & Associates, Seattle, WA, United States

    Google Scholar 

  19. Chung, D.D.L.: Carbon Fiber Composites. Butterworth-Heinemann, Elsevier, Oxford, United Kingdom (1994)

    Google Scholar 

  20. Gay, D., Hoa, S.V.: Composite Materials: Design and Applications, 2nd edn. CRC Press, Taylor & Francis Group, Cleveland, Ohio (2007)

    Google Scholar 

  21. Cherouat, A., Borouchaki, H.: Present state of art of composite fabric forming: geometrical and mechanical approaches. Materials 2, 1835–1857 (2009)

    Article  Google Scholar 

  22. Abaqus V.6.11 User manual. Providence, Rhode Islands, United States

    Google Scholar 

  23. Berge, J., Lerneryd, E., Heintz, P.: Spring orthosis analysis. Finite element modeling and optimization of a composite material. In: SIMULIA Customer Conference. Dassault Systemes, Vélizy-Villacoublay Cedex, France, (2011)

    Google Scholar 

  24. Svärd, L.: Composites failure modeling and optimization of a spring orthosis. M.S. Thesis, Chalmers University of Technology, Gothenburg, Sweden (2012)

    Google Scholar 

  25. Miconi, A.: Caratterizzazione meccanica e chimico-fisica del peek caricato con fibre di carbonio per la realizzazione di protesi acetabolari dell’anca. M.S. Thesis, University of Padova, Padova, Italy (2010). (in Italian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cocconcelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bellavita, G., Cocconcelli, M., Castagnetti, D., Rubini, R. (2017). Development and Validation of a Numerical Model for the Optimization of a Brace for Lower Limb. In: Silva, L. (eds) Materials Design and Applications. Advanced Structured Materials, vol 65. Springer, Cham. https://doi.org/10.1007/978-3-319-50784-2_13

Download citation

Publish with us

Policies and ethics