Skip to main content
  • 2678 Accesses

Abstract

We consume a large number of toxic chemicals daily in our perfectly natural diet. The toxicants may be chemical constituents of the food itself, contaminants from microbial infestation, or degradation products from chemical changes during food processing (including cooking). Toxicants vary in chemical structures ranging from amino acids to proteins, from simple amines to alkaloids, and from phenolic compounds to their glycosides and derivatives. The biological effects of these chemicals are diverse and complex, and only a small percentage of these studies have been directed to the mechanism of action at the molecular level. A thorough understanding of the structural activity and biochemical mechanism of these naturally occurring toxicants is essential to ensure proper preparation and processing of foods. Caution must be taken to the fact that toxicity is determined not only by the chemical and biological properties of the compound but also the level and duration of exposure an individual is subjected to. While it is true that many food plants contain toxicants, the generally low level of these compounds combined with the variety of choices in human diet usually precludes the risk of intoxification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anonymous (1983) Caffeine. Food Technol 37(4):87–91

    Google Scholar 

  2. Archer MC (1982) Reactive intermediates from nitrosamines. In: Snyder R (ed) Biological reactive intermediates – II. Advances in experimental medicine and biology, vol 136B. Plenum Press, New York

    Google Scholar 

  3. Bell EA (1980-1981) The structure and biosynthesis of lathyrogens and related compounds. Food Chem 6:213–222

    Article  Google Scholar 

  4. Benn M (1977) Glucosinolates. Pure Appl Chem 49:197–210

    Article  CAS  Google Scholar 

  5. Bharucha KR, Cross CK, Rubin LJ (1979) Mechanism of N-nitrosopyrrolidine formation in bacon. J Agric Food Chem 27:63–69

    Article  CAS  Google Scholar 

  6. Bosin TR, Krogh S, Mais D (1986) Identification and quantitation of 1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid and 1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid in beer and wine. J Agric Food Chem 34:843–847

    Article  CAS  Google Scholar 

  7. Chow YL (1973) Nitrosamine photochemistry: reactions of aminium radicals. Acc Chem Res 6:354–360

    Article  CAS  Google Scholar 

  8. Coleman MH (1978) A model system for the formation of N-nitrosopyrrolidine in grilled or fried bacon. J Food Technol 13:55–69

    Article  CAS  Google Scholar 

  9. Conn EE (1969) Cyanogenic glycosides. J Agric Food Chem 17:519–526

    Article  CAS  Google Scholar 

  10. Conn EE (1981) Unwanted biological substances in foods: cyanogenic glycosides. In: Ayres JC, Kirschman JC (eds) Impact of toxicology on food processing. AVI, Westport

    Google Scholar 

  11. Crosby NT, Sawyer R (1976) N-nitrosamines: a review of chemical and biological properties and their estimation in foodstuffs. Adv Food Res 22:1–56

    Article  CAS  Google Scholar 

  12. Croy RG, Wogan GN (1981) Temporal patterns of covalent DNA adducts in rate liver after single and multiple doses of aflatoxin B1. Cancer Res 41:197–203

    CAS  Google Scholar 

  13. Davies R, Massey RC, McWeeny DJ (1980-1981) The catalysis of the N-nitrosation of secondary amines by nitrophenols. Food Chem 6:115–122

    Article  CAS  Google Scholar 

  14. Fan T-Y, Tannenbaum SR (1973) Factors influencing the rate of formation of nitrosamorpholine from morpholine and nitrite: acceleration by thiocyanate and other anions. J Agric Food Chem 21:237–240

    Article  CAS  Google Scholar 

  15. Fenwick GR, Heaney RK, Mullin WJ (1983) Glucosinolates and their breakdown products in food and food plants. CRC Crit Rev Food Technol 18:123–200

    CAS  Google Scholar 

  16. Fernandez M, Liu X, Wouters MA, Heyberger S, Husain A (2001) Antiotensin I-converting enzyme transition state stabilization by His1089. J Biol Chem 276:4998–5004

    Article  CAS  Google Scholar 

  17. Fretheim K (1983) Polycyclic aromatic hydrocarbons in grilled meat products − a review. Food Chem 10:129–139

    Article  CAS  Google Scholar 

  18. Gigliotti HJ, Levenberg B (1964) Studies in the γ-glutamyltransferase of Agaricus bisporus. J Biol Chem 239:2274–2284

    CAS  Google Scholar 

  19. Hanschen FS, Lamy E, Schreiner M, Rohn S (2014) Reactivity and stability of glucosinolates and their breakdown products in foods. Angew Chem Inst Ed 53:11430–11450

    Article  CAS  Google Scholar 

  20. Hashimoto Y, Shudo K, Okamoto T (1984) Mutagenic chemistry of heteroaromatic amines and mitomycin C. Acc Chem Res 17:403–408

    Article  CAS  Google Scholar 

  21. Hashimoto Y, Shudo K, Okamoto T (1980) Activation of a mutagen, 3-amino-methyl-5H-pyrido[4,3-b]indole. Identification of 3-hydroxyamino-1-methyl-5H-pyrido[4,3-b]indole and its reaction with DNA. Biochem Biophys Res Commun 96:355–362

    Article  CAS  Google Scholar 

  22. Huberman E, Sachs L, Yang SK, Gelboin HV (1976) Identification of mutagenic metabolites of benzo[a]pyrene in mammalian cells. Proc Natl Acad Sci U S A 73:607–611

    Article  CAS  Google Scholar 

  23. King HW, Osborne MR, Beland FA, Harvey RG, Brookes P (1976) (±)-7α,8β-dihydroxy-9β,10β-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene in an intermediate in the metabolism and binding to DNA of benzo[a]pyrene. Proc Natl Acad Sci USA 73:2679–2661

    Article  CAS  Google Scholar 

  24. Lam K-H, Jin R (2015) Architecture of the botulinum neurotoxin complex: a molecular machine for protection and delivery. Curr Opin Struct Biol 31:89–95

    Article  CAS  Google Scholar 

  25. Lam K-H, Yao G, Jin R (2015) Diverse binding modes, same goal: the receptor recognition mechanism of botulinum neurotoxin. Prog Biophys Mol Biol 117:225–231

    Article  CAS  Google Scholar 

  26. Lovenberg W (1974) Psycho- and vasoactive compounds in food substances. J Agric Food Chem 22:23–26

    Article  CAS  Google Scholar 

  27. Miller AJ (1985) Processing-induced mutagens in muscle foods. Food Technol 39(2):75–79. 109-113

    CAS  Google Scholar 

  28. Norred WP (1982) Ammonia treatment to destroy aflatoxins in corn. J Food Protection 45:972–976

    Article  CAS  Google Scholar 

  29. Osman SF (1983) Glycoalkaloids in potatoes. Food Chem 11:235–247

    Article  CAS  Google Scholar 

  30. Patterson DSP, Roberts BA (1970) The formation of alatoxins B2a and G2a and their degradation products during the in vitro detoxification of aflatoxin by livers of certain avian and mammalian species. Food Cosmet Toxicol 8:527–538

    Article  CAS  Google Scholar 

  31. Roberts HR, Barone JT (1983) Biological effects of caffeine, history and use. Food Technol 37(9):32–39

    Google Scholar 

  32. Roddick JG (1979) Complex formation between solanaceous steroidal glycoalkaloids and free sterols in vitro. Phytochemistry 18:1467–1470

    Article  CAS  Google Scholar 

  33. Ross AE, Nagel DL, Toth B (1982) Evidence for the occurrence and formation of diazonium ions in the Agaricus bisporus mushroom and its extracts. J Agric Food Chem 30:521–525

    Article  CAS  Google Scholar 

  34. Silvaggi NR, Wilson D, Tzipori S, Allen KN (2008) Catalytic features of the botulinum neurotoxin A light chain revealed by high resolution structure of an inhibitory peptide complex. Biochemistry 47:5736–5745

    Article  CAS  Google Scholar 

  35. Simpson LL (1981) The origin, structure, and pharmacological activity of botulinum toxin. Pharmacol Rev 33:155–188

    CAS  Google Scholar 

  36. Simpson LL (1986) Molecular pharmacology of botulinum toxin and tetanus toxin. Pharmacol Rev Pharmacol Toxicol 26:427–453

    Article  CAS  Google Scholar 

  37. Sinden SL, Webb RE (1972) Effect of variety and location on the glycoalkaloid content of potatoes. Am Potato J 49:334–338

    Article  CAS  Google Scholar 

  38. Smith TA (1980–1981) Amines in food. Food Chem 6:169–200

    Article  Google Scholar 

  39. Snyder SH, Katims JJ, Annau Z, Bruns RF, Daly JW (1981) Adenosine receptors and behavorial action of methylxanthines. Proc Natl Acad Sci U S A 78:3260–3264

    Article  CAS  Google Scholar 

  40. Sugimura T, Wakabayashi K, Nakagama H, Hagao M (2004) Heterocyclic amines: mutagens/carcinogens produced during cooking of meat and fish. Cancer Sci 95:290–299

    Article  CAS  Google Scholar 

  41. Swenson DH, Miller JA, Miller EC (1975) The reactivity and carcinogenicity of aflatoxin B1. Cancer Res 35:3811–3823

    CAS  Google Scholar 

  42. Tarka SM Jr (1982) The toxicology of cocoa and methylxanthines: a review of the literature. CRC Crit Rev Toxicol 9:275–310

    Article  CAS  Google Scholar 

  43. Taylor SL (1986) Histamine food poisoner: toxicology and clinical aspects. CRC Crit Rev Toxicol 17:91–128

    Article  CAS  Google Scholar 

  44. van Borstel RW (1983) Biological effects of caffeine. Food Technol 37(9):40–43, 46

    Google Scholar 

  45. van Etten CH, Daxenbichler ME, Wolff IA (1969) Natural glucosinolates (thioglucosides) in foods and feeds. J Agric Food Chem 17:483–491

    Article  Google Scholar 

  46. Wakabayashi K, Ochiai M, Saito H, Tsuda M, Suwa Y, Nagao M, Sugimura T (1983) Presence of 1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid, a precursor of a mutagenic nitroso compounds, in soy sauce. Proc Natl Acad Sci U S A 80:2912–2916

    Article  CAS  Google Scholar 

  47. Wieland T (1968) Poisonous principles of mushrooms of the genus Amanita. Science 159:946–952

    Article  CAS  Google Scholar 

  48. Yang D, Tannenbaum SR, Buchi G, Lee GCM (1984) 4-Chloro-6-methoxyindol is the precursor of a potent mutagen (4-chloro-6-methoxy-2-hydroxy-1-nitroso-indolin-3-one oxime) that forms during nitrosation of the fava bean (Vicia faba). Carcinogenesis 5:1219–1224

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wong, D.W.S. (2018). Natural Toxicants. In: Mechanism and Theory in Food Chemistry, Second Edition. Springer, Cham. https://doi.org/10.1007/978-3-319-50766-8_8

Download citation

Publish with us

Policies and ethics