Skip to main content

Parameter Estimation: Definition and Sampling Design

  • Chapter
  • First Online:
  • 1201 Accesses

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

Process control and supervision are based mainly on the use of models. These models have to be as accurate as possible to generate reliable results. Complex systems, like water distribution networks, need such models in order to comprehend them. Models presented in Chap. 3 are used in simulation, optimization, supervision, leak detection, etc. When the model is generated, large errors are introduced. These errors discourage the technicians unless they are corrected in a first calibration effort: macrocalibration. This is an ad hoc process that is done manually. The methodology, carried out by the experts, can be partially addressed using artificial intelligence (AI) algorithms. Once the major errors are solved, the parameter tuning, microcalibration, is posed as an optimization problem. Before these procedures are applied, the problem and the information available have to be analysed in order to assure the reliability of the resulting model. Given a number of parameters to be estimated, the measurements required for guaranteeing the identifiability and the well-posedness of the problem may be too exigent. Thus, the sampling design is often associated with a redefinition of the parameters to be estimated. In this chapter, both the parameterization and the sampling design are presented proposing a methodology that has given promising results with real water distribution networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahmed I, Lansey K, Araujo J (1999) Data collection for water distribution network calibration. In: 2nd International conference on water pipeline systems, pp 271–278, Exeter

    Google Scholar 

  2. American Water Works Association Research Committee on Distribution Systems (1974) Water distribution research and applied development needs. J Am Water Works Assoc 66(6):385–390

    Google Scholar 

  3. Aster R, Borchers B, Thurber C (2005) Parameter estimation and inverse problems. Elsevier, New York

    MATH  Google Scholar 

  4. Bard Y (1974) Nonlinear parameter estimation. Academic Press, San Diego, California

    MATH  Google Scholar 

  5. Bargiela A (1985) An algorithm for observability determination in water-system state estimation. Control Theory Appl 132(6):245–250

    Article  MATH  Google Scholar 

  6. Behzadian K, Kapelan Z, Savic D, Ardeshir A (2009) Stochastic sampling design using a multi-objective genetic algorithm and adaptive neural networks. Environ Modell Softw 24(4):530–541

    Article  Google Scholar 

  7. Bonada E, Meseguer J, Mirats Tur JM (2014) Practical-oriented pressure sensor placement for model-based leakage location in water distribution networks. In: Piasecki M (ed) Informatics and the environment: data and model integration in a heterogeneous hydro world. New York

    Google Scholar 

  8. Bush C, Uber J (1998) Sampling design methods for water distribution model calibration. J Water Resour Plan Manage 124(6):334–344

    Article  Google Scholar 

  9. Carpentier P, Cohen G (1991) State estimation and leak detection in water distribution networks. Civil Eng Syst 8(4):247–257

    Article  Google Scholar 

  10. Chen LC (1995) Pipe network transient analysis—the forward and inverse problems. PhD thesis, Cornell University

    Google Scholar 

  11. Cheng W, He Z (2011) Calibration of nodal demand in water distribution systems. J Water Resour Plan Manage 137(1):31–40

    Article  Google Scholar 

  12. Datta R, Sridharan K (1994) Parameter estimation in water distribution systems by least squares. J Water Resour Plan Manage 120(4):405–422

    Article  Google Scholar 

  13. de Schaetzen WBF, Walters GA, Savic DA (2000) Optimal sampling design for model calibration using shortest path, genetic and entropy algorithms. Urban Water J 2(2):141–152

    Article  Google Scholar 

  14. Del Giudice G, Di Cristo C (2003) Sampling design for water distribution networks. Trans Ecol Environ 61

    Google Scholar 

  15. Eggener C, Polwoski L (1976) Network models and the impact of modeling assumptions. J Am Water Works Assoc 68(4):189–196

    Google Scholar 

  16. Ferreri G, Napoli E, Tumbiolo A (1994) Calibration of roughness in water distribution systems. In: 2nd International conference on water pipeline systems, pp 379–396

    Google Scholar 

  17. Giustolisi O, Walski T (2012) Demand components in water distribution network analysis. J Water Resour Plan Manage 138(4):356–367

    Article  Google Scholar 

  18. Goulet J-A, Coutu S, Smith IFC (2013) Model falsification diagnosis and sensor placement for leak detection in pressurized pipe networks. Adv Eng Inform 27(2):261–269

    Article  Google Scholar 

  19. Griewank A, Juedes D, Mitev H, Utke J, Vogel O, Walther A (1998) ADOL-C: a package for the automatic differentiation of algorithms written in C/C++

    Google Scholar 

  20. Hutton CJ, Kapelan Z, Vamvakeridou-Lyroudia L, Savić DA (2014) Dealing with uncertainty in water distribution system models: a framework for real-time modeling and data assimilation. J Water Resour Plan Manage 140(2):169–183

    Article  Google Scholar 

  21. Kang D, Lansey K (2010) Optimal meter placement for water distribution system state estimation. J Water Resour Plan Manage 136(3):337–347

    Article  Google Scholar 

  22. Kapelan Z, Savic D, Walters G (2003) Multiobjective sampling design for water distribution model calibration. J Water Resour Plan Manage 129(6):466–479

    Article  Google Scholar 

  23. Kapelan Z, Savic D, Walters G (2003) A hybrid inverse transient model for leakage detection and roughness calibration in pipe networks. J Hydraul Res 41(5):481–492

    Article  Google Scholar 

  24. Kapelan Z, Savic D, Walters G (2005) Optimal sampling design methodologies for water distribution model calibration. J Hydraul Eng 131(3):190–200

    Article  Google Scholar 

  25. Krumpholz G, Clements K, Davis P (1980) Power system observability: a practical algorithm using network topology. IEEE Trans Power Apparatus Syst PAS-99(4):1534–1542

    Google Scholar 

  26. Lansey K, Basnet C (1991) Parameter estimation for water distribution networks. J Water Resour Plan Manage 117(1):126

    Article  Google Scholar 

  27. Lansey K, El-Shorbagy W, Ahmed I, Araujo J, Haan C (2001) Calibration assessment and data collection for water distribution networks. J Hydraul Eng 127(4):270–279

    Article  Google Scholar 

  28. Liggett J, Chen L (1994) Inverse transient analysis in pipe networks. J Hydraul Eng 120(8):934–955

    Article  Google Scholar 

  29. Loaiciga H, Charbeneau R, Everett L, Fogg G, Hobbs B, Rouhani S (1992) Review of ground water quality monitoring network design. J Hydraul Eng 118(1):11–37

    Article  Google Scholar 

  30. Mallick K, Ahmed I, Tickle K, Lansey K (2002) Determining pipe groupings for water distribution networks. J Water Resour Plan Manage 128(2):130–139

    Article  Google Scholar 

  31. Meier R, Barkdoll B (2000) Sampling design for network model calibration using genetic algorithms. J Water Resour Plan Manage 126(4):245–250

    Article  Google Scholar 

  32. Nejjari F, Sarrate R, Blesa J (2015) Optimal pressure sensor placement in water distribution networks minimizing leak location uncertainty. Procedia Eng 119:953–962

    Article  Google Scholar 

  33. Ormsbee L (1989) Implicit network calibration. J Water Resour Plan Manage 115(2):243–257

    Article  Google Scholar 

  34. Ostfeld A, Salomons E, Ormsbee L, Uber J, Bros C, Kalungi P, Burd R, Zazula-Coetzee B, Belrain T, Kang D, Lansey K, Shen H, McBean E, Wu ZY, Walski T, Alvisi S, Franchini M, Johnson J, Ghimire S, Barkdoll B, Koppel T, Vassiljev A, Kim JH, Chung G, Yoo DG, Diao K, Zhou Y, Li J, Liu Z, Chang K, Gao J, Qu S, Yuan Y, Devi Prasad T, Laucelli D, Vamvakeridou Lyroudia L, Kapelan Z, Savic D, Berardi L, Barbaro G, Giustolisi O, Asadzadeh M, Tolson B, McKillop R (2012) Battle of the water calibration networks. J Water Resour Plan Manage 138(5):523–532

    Article  Google Scholar 

  35. Ozawa T (1987) The principal partition of a pair of graphs and its applications. Discrete Appl Math 17(1–2):163–186

    Article  MathSciNet  MATH  Google Scholar 

  36. Pérez R (2003) Identifiability and calibration of water network models. PhD thesis, Universitat de Catalunya

    Google Scholar 

  37. Pérez R, Puig V, Pascual J, Peralta A, Landeros E, Ll Jordanas (2009) Pressure sensor distribution for leak detection in Barcelona water distribution network. Water Sci Technol: Water Supply 9(6):715

    Google Scholar 

  38. Pérez R, Sanz G (2014) Optimal placement of metering devices for multiple purposes. In: 11th International conference on hydroinformatics, New York

    Google Scholar 

  39. Pérez R, Sanz G, Puig V, Quevedo J, Escofet MAC, Nejjari F, Meseguer J, Cembrano G, Mirats Tur JM, Sarrate R (2014) Leak localization in water networks: a model-based methodology using pressure sensors applied to a real network in Barcelona [applications of control]. IEEE Control Syst 34(4):24–36

    Article  MathSciNet  Google Scholar 

  40. Piller O, Bremond B, Morel P (1999) A spatial sampling procedure for physical diagnosis in a drinking water supply network. In: Savic DA, Walters GA (eds) Water industry systems: modelling and optimization applications, pp 309–316. Exceter

    Google Scholar 

  41. Piller O, Deuerlein J, Gilbert D, Weber J-M (2015) Installing fixed sensors for double calibration and early-warning detection purposes. Procedia Eng 119:564–572

    Article  Google Scholar 

  42. Pinzinger R, Deuerlein J, Wolters A, Simpson A (2011) Alternative approaches for solving the sensor placement problem in large networks. In: Water distribution systems analysis 2011

    Google Scholar 

  43. Sanz G, Pérez R (2014) Comparison of Demand Pattern Calibration in Water Distribution Network with Geographic and Non-Geographic Parameterization. In: 11th International conference on hydroinformatics, New York

    Google Scholar 

  44. Sanz G, Pérez R (2014) Demand pattern calibration in water distribution networks. Procedia Eng 70:1495–1504

    Article  Google Scholar 

  45. Sanz G, Pérez R (2014) Parameterization and sampling design for water networks demand calibration using the singular value decomposition: application to a real network. In: 11th International conference on hydroinformatics, New York

    Google Scholar 

  46. Sanz G, Pérez R (2015) Sensitivity analysis for sampling design and demand calibration in water distribution networks using the singular value decomposition. J Water Resour Plan Manage 04015020

    Google Scholar 

  47. Savic D, Kapelan Z, Jonkergouw P (2009) Quo vadis water distribution model calibration? Urban Water J 6(1):3–22

    Article  Google Scholar 

  48. Shamir U, Howard C (1977) Engineering analysis of water-distribution systems. J Am Water Works Assoc 69(9):510–514

    Google Scholar 

  49. Sorenson H (1980) Parameter estimation: principles and problems. Marcel Dekker, New York

    MATH  Google Scholar 

  50. Sumer D, Lansey K (2009) WDS calibration and assessment for alternative modelling objectives. Urban Water J 6(4):265–277

    Article  Google Scholar 

  51. Walski T (1983) Technique for calibrating network models. J Water Resour Plan Manage 109(4):360

    Article  Google Scholar 

  52. Walski T (1985) Assuring accurate model calibration. J Am Water Works Assoc 77(12):38–41

    Google Scholar 

  53. Walski T (1995) Standards for model calibration. In: American water works association computer conference, Norfolk

    Google Scholar 

  54. Walski T (2000) Model calibration data: the good, the bad, and the useless. J Am Water Works Assoc 92(1):94–99

    Google Scholar 

  55. Walski T, Sage P, Zheng W (2014) What does it take to make automated calibration find closed valves and leaks? World Environ Water Resour Congr 2014:555–565

    Google Scholar 

  56. Walter E, Pronzato L (1996) On the identifiability and distinguishability of nonlinear parametric models. Math Comput Simul 42(2–3):125–134

    Article  MATH  Google Scholar 

  57. Wiggins R (1972) The general linear inverse problem: Implication of surface waves and free oscillations for Earth structure. Rev Geophys 10(1):251–285

    Article  Google Scholar 

  58. William Y (1986) Review of parameter identification procedures in groundwater hydrology: the inverse problem. Water Resour Res 2:95–108

    Google Scholar 

  59. Yu G, Powell R (1994) Optimal design of meter placement in water distribution systems. Int J Syst Sci 25(12):2155–2166

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon Pérez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sanz, G., Pérez, R. (2017). Parameter Estimation: Definition and Sampling Design. In: Puig, V., Ocampo-Martínez, C., Pérez, R., Cembrano, G., Quevedo, J., Escobet, T. (eds) Real-time Monitoring and Operational Control of Drinking-Water Systems. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-50751-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50751-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50750-7

  • Online ISBN: 978-3-319-50751-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics