Skip to main content

In Vitro and Animal Models of Tuberculosis of the Nervous System

  • Chapter
  • First Online:
Tuberculosis of the Central Nervous System

Abstract

Central nervous system (CNS) tuberculosis (TB) is a serious and deadly form of TB which affects young children and human immunodeficiency virus-infected individuals predominantly. It is the most critical extrapulmonary manifestation of TB, with a high mortality rate and residual neurologic sequelae. It constitutes approximately 1% of all tuberculosis cases. Although various suggestions have been reported related to the occurrence mechanism of the disease, the mechanism is not entirely understood yet. It is considered that Mycobacterium tuberculosis should pass through the blood-brain barrier (BBB) for the occurrence of TB of CNS. The exact entry mechanism of M. tuberculosis to the CNS by passing through the BBB has not been fully elucidated to date. While some authors have suggested that free bacilli directly pass through the endothelial barrier, others have considered that bacilli enter via the macrophages. Various studies in in vitro and animal models have been used for understanding the pathogenesis of TB of CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BBB:

Blood-brain barrier

CNS:

Central nervous system

CoMTb:

Conditioned medium from M. tuberculosis-infected human monocytes

CSF:

Cerebrospinal fluid

HBHA:

Heparin-binding hemagglutinin adhesin

HIV:

Human immunodeficiency virus

iNOS:

Inducible nitric oxide synthetase

MAPK:

Mitogen-activated protein kinase

MMP:

Matrix metalloproteinase

TB:

Tuberculosis

TBM:

Tuberculous meningitis

TIMP:

Tissue inhibitor of metalloproteinase

References

  1. Armand-DeLille PF (1903) Role des poisons du bacille de Koch dans la meningite tuberculeuse et la tuberculose des centres nerveux: etude experimentale et anatomo-pathologique. Universite de Paris, Paris

    Google Scholar 

  2. Be NA, Lamichhane G, Grosset J, Tyagi S, Cheng QJ, Kim KS, Bishai WR, Jain SK (2008) Murine model to study the invasion and survival of Mycobacterium tuberculosis in the central nervous system. J Infect Dis 198:1520–1528

    Article  PubMed  Google Scholar 

  3. Drevets DA, Leenen PJ, Greenfield RA (2004) Invasion of the central nervous system by intracellular bacteria. Clin Microbiol Rev 17:323–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lemierre A, Ameuille P (1938) Granulieconse’cutiveal’injectionintraveineuse volonteire d’une e’mulsion de bacilles de Koch. Bull Mem Soc Med Hop Paris 54:286–295

    Google Scholar 

  5. Rich AR, McCordock HA (1933) The pathogenesis of tuberculous meningitis. Bull Johns Hopkins Hosp 52:5–37

    Google Scholar 

  6. Bermudez LE, Sangari FJ, Kolonoski P, Petrofsky M, Goodman J (2002) The efficiency of the translocation of Mycobacterium tuberculosis across a bilayer of epithelial and endothelial cells as a model of the alveolar wall is a consequence of transport within mononuclear phagocytes and invasion of alveolar epithelial cells. Infect Immun 70:140–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Birkness KA, Deslauriers M, Bartlett JH, White EH, King CH, Quinn FD (1999) An in vitro tissue culture bilayer model to examine early events in Mycobacterium tuberculosis infection. Infect Immun 67:653–658

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hernández-Pando R, Jeyanathan M, Mengistu G, Aguilar D, Orozco H, Harboe M, Rook GA, Bjune G (2000) Persistence of DNA from Mycobacterium tuberculosis in superficially normal lung tissue during latent infection. Lancet 356:2133–2138

    Article  PubMed  Google Scholar 

  9. Menozzi FD, Reddy VM, Cayet D, Raze D, Debrie AS, Dehouck MP, Cecchelli R, Locht C (2006) Mycobacterium tuberculosis heparin-binding haemagglutinin adhesin (HBHA) triggers receptor-mediated transcytosis without altering the integrity of tight junctions. Microbes Infect 8:1–9

    Article  CAS  PubMed  Google Scholar 

  10. Rubin LL, Staddon JM (1999) The cell biology of the blood-brain barrier. Annu Rev Neurosci 22:11–28

    Article  CAS  PubMed  Google Scholar 

  11. Jain SK, Paul-Satyaseela M, Lamichhane G, Kim KS, Bishai WR (2006) Mycobacterium tuberculosis invasion and traversal across an in vitro human blood-brain barrier as a pathogenic mechanism for central nervous system tuberculosis. J Infect Dis 193:1287–1295

    Article  CAS  PubMed  Google Scholar 

  12. Green JA, Dholakia S, Janczar K, Ong CW, Moores R, Fry J, Elkington PT, Roncaroli F, Friedland JS (2011) Mycobacterium tuberculosis-infected human monocytes down-regulate microglial MMP-2 secretion in CNS tuberculosis via TNFalpha, NFkappaB, p38 and caspase 8 dependent pathways. J Neuroinflammation 8:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Green JA, Elkington PT, Pennington CJ, Roncaroli F, Dholakia S, Moores RC, Bullen A, Porter JC, Agranoff D, Edwards DR, Friedland JS (2010) Mycobacterium tuberculosis upregulates microglial matrix metalloproteinase-1 and -3 expression and secretion via NF-kappaB- and Activator Protein-1-dependent monocyte networks. J Immunol 184:6492–6503

    Article  CAS  PubMed  Google Scholar 

  14. Green JA, Rand L, Moores R, Dholakia S, Pezas T, Elkington PT, Friedland JS (2013) In an in vitro model of human tuberculosis, monocyte-microglial networks regulate matrix metalloproteinase-1 and -3 gene expression and secretion via a p38 mitogen activated protein kinase-dependent pathway. J Neuroinflammation 10:107

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rich AR, McCordock HA (1929) An enquiry concerning the role of allergy, immunity and other factors of importance in the pathogenesis of human tuberculosis. Bull Johns Hopkins Hosp 44:273–382

    Google Scholar 

  16. Tsenova L, Sokol K, Freedman VH, Kaplan G (1998) A combination of thalidomide plus antibiotics protects rabbits from mycobacterial meningitis-associated death. J Infect Dis 177:1563–1572

    Article  CAS  PubMed  Google Scholar 

  17. Mazzolla R, Puliti M, Barluzzi R, Neglia R, Bistoni F, Barbolini G, Blasi E (2002) Differential microbial clearance and immunoresponse of Balb/c (Nramp1 susceptible) and DBA2 (Nramp1 resistant) mice intracerebrally infected with Mycobacterium bovis BCG (BCG) FEMS. Immunol Med Microbiol 32:149–158

    Article  CAS  Google Scholar 

  18. van Well GT, Wieland CW, Florquin S, Roord JJ, van der Poll T, van Furth AM (2007) A new murine model to study the pathogenesis of tuberculous meningitis. J Infect Dis 195:694–697

    Article  PubMed  Google Scholar 

  19. Olin MR, Armien AG, Cheeran MC, Rock RB, Molitor TW, Peterson PK (2008) Role of nitric oxide in defense of the central nervous system against Mycobacterium tuberculosis. J Infect Dis 198:886–889

    Article  PubMed  Google Scholar 

  20. Rock RB, Olin M, Baker CA, Molitor TW, Peterson PK (2008) Central nervous system tuberculosis: pathogenesis and clinical aspects. Clin Microbiol Rev 21:243–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van Leeuwen LM, van der Kuip M, Youssef SA, de Bruin A, Bitter W, van Furth AM, van der Sar AM (2014) Modeling tuberculous meningitis in zebrafish using Mycobacterium marinum. Dis Model Mech 7:1111–1122

    Article  PubMed  PubMed Central  Google Scholar 

  22. Blacklock JWS, Griffin MA (1935) Tuberculosis meningitis: problems in pathogenesis and treatment. J Pathol Bacteriol 40:489–502

    Article  Google Scholar 

  23. Donald PR, Schaaf HS, Schoeman JF (2005) Tuberculous meningitis and miliary tuberculosis: the Rich focus revisited. J Infect 50:193–195

    Article  CAS  PubMed  Google Scholar 

  24. Horne NW (1951) Tuberculous meningitis: problems in pathogenesis and treatment. Edinburgh Med J 58:413–429

    CAS  Google Scholar 

  25. MacGregor AR, Green CA (1937) Tuberculosis of the central nervous system, with special reference to tuberculous meningitis. J Pathol Bacteriol 45:613–645

    Article  Google Scholar 

  26. Volkman HE, Clay H, Beery D, Chang JCW, Sherman DR, Ramakrishnan L (2004) Tuberculous granuloma formation is enhanced by a mycobacterium virulence determinant. PLoS Biol 2:e367

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Turgut MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Yazici, O., Turgut, A.T., Turgut, M. (2017). In Vitro and Animal Models of Tuberculosis of the Nervous System. In: Turgut, M., Akhaddar, A., Turgut, A., Garg, R. (eds) Tuberculosis of the Central Nervous System. Springer, Cham. https://doi.org/10.1007/978-3-319-50712-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50712-5_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50711-8

  • Online ISBN: 978-3-319-50712-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics