Skip to main content

The Use of Coding and Protocols Within Molecular Communication Systems

  • Chapter
  • First Online:
Book cover Modeling, Methodologies and Tools for Molecular and Nano-scale Communications

Part of the book series: Modeling and Optimization in Science and Technologies ((MOST,volume 9))

  • 908 Accesses

Abstract

This chapter focuses upon the use of coding and protocols within diffusion based molecular communication systems, laying the groundwork for future development in test bed implementations. The chapter starts with an introduction that briefly discusses coding and protocols used in traditional communication systems. Following this, details of the molecular channel are given, including the energy consumption constraints and a relevant mathematical framework. This discussion then leads onto potential encoding and decoding technologies. Next, original results on the use of Hamming codes in molecular communication systems are presented with a quantitative comparison against an uncoded molecular system. The impact of specific design parameters such as the number of molecules, energy, and transmission distance on the bit error rate (BER) is considered. Finally, a protocol, based upon the use of an acknowledgement (ACK) packet is presented as a further advancement to the field that the reader may wish to consider when designing future systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akyildiz IF, Brunetti F, Blázquez C (2008) Nanonetworks: a new communication paradigm. Comput Netw 52:2260–2279

    Article  Google Scholar 

  2. Moore M, Enomoto A, Nakano T, Egashira R, Suda T, Kayasuga A et al (2006) A design of a molecular communication system for nanomachines using molecular motors. In: IEEE international conference on pervasive computing and communications workshops, pp 554–559

    Google Scholar 

  3. Bernard S (1988) Digital communications: fundamentals and applications. Prentice-Hall

    Google Scholar 

  4. Kurose JF (2005) Computer networking: a top-down approach featuring the Internet. Pearson

    Google Scholar 

  5. Moeneclaey M, Bruneel H (1984) Efficient ARQ scheme for high error rate channels. Electron Lett 20:986–987

    Article  Google Scholar 

  6. De Munnynck M, Lootens A, Wittevrongel S, Bruneel H (2002) Transmitter buffer behaviour of stop-and-wait ARQ schemes with repeated transmissions. In: IEE proceedings in communications, pp 13–17

    Google Scholar 

  7. Kuran MŞ, Yilmaz HB, Tugcu T, Özerman B (2010) Energy model for communication via diffusion in nanonetworks. Nano Commun Netw 1:86–95

    Article  Google Scholar 

  8. Leeson MS (2000) Performance analysis of direct detection spectrally sliced receivers using Fabry-Perot filters. J Lightwave Technol 18:13–25

    Article  Google Scholar 

  9. Ziff RM, Majumdar SN, Comtet A (2009) Capture of particles undergoing discrete random walks. J Chem Phys 130. 27 Mar 2009

    Google Scholar 

  10. Kuran MS, Yilmaz HB, Tugcu T, Akyildiz IF (2011) Modulation techniques for communication via diffusion in nanonetworks. In: IEEE International Conference on Communications (ICC), pp 1–5

    Google Scholar 

  11. Kim N-R, Chae C-B (2012) Novel modulation techniques using isomers as messenger molecules for molecular communication via diffusion. In: IEEE International Conference on Communications (ICC), pp 6146–6150

    Google Scholar 

  12. Freitas RA (1999) Nanomedicine, volume I: basic capabilities. Landes Bioscience

    Google Scholar 

  13. Giné LP, Akyildiz IF (2009) Molecular communication options for long range nanonetworks. Comput Netw 53:2753–2766

    Article  Google Scholar 

  14. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  MathSciNet  MATH  Google Scholar 

  15. Yan H, Choe HS, Nam S, Hu Y, Das S, Klemic JF et al (2011) Programmable nanowire circuits for nanoprocessors. Nature 470:240–244

    Article  Google Scholar 

  16. Knowles JR (1980) Enzyme-catalyzed phosphoryl transfer reactions. Annu Rev Biochem 49:877–919

    Article  Google Scholar 

  17. Sauro HM, Kholodenko BN (2004) Quantitative analysis of signaling networks. Prog Biophys Mol Biol 86:5–43

    Article  Google Scholar 

  18. Leeson MS, Higgins MD (2012) Forward error correction for molecular communications. Nano Commun Networks 3:161–167

    Article  Google Scholar 

  19. Blahut RE (2003) Algebraic codes for data transmission. Cambridge University Press

    Google Scholar 

  20. Howard SL, Schlegel C, Iniewski K (2006) Error control coding in low-power wireless sensor networks: when is ECC energy-efficient? EURASIP J Wireless Commun Networking 2006

    Google Scholar 

  21. Akyildiz IF, Fekri F, Sivakumar R, Forest CR, Hammer BK (2012) Monaco: fundamentals of molecular nano-communication networks. IEEE Trans Wireless Commun 19:12–18

    Article  Google Scholar 

  22. Walsh F, Balasubramaniam S, Botvich D, Donnelly W, Sergeyev S (2007) Development of molecular based communication protocols for nanomachines. Presented at the proceedings of the 2nd international conference on nano-networks, Catania, Italy

    Google Scholar 

  23. Krivan V, Lánský P, Rospars JP (2002) Coding of periodic pulse stimulation in chemoreceptors. BioSystems 67:121–128

    Article  Google Scholar 

  24. Atakan B, Akan O (2007) An information theoretical approach for molecular communication. In: Bio-inspired models of network, information and computing systems, pp 33–40

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Leeson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Leeson, M.S., Higgins, M.D., Bai, C., Lu, Y., Wang, X., Yu, R. (2017). The Use of Coding and Protocols Within Molecular Communication Systems. In: Suzuki, J., Nakano, T., Moore, M. (eds) Modeling, Methodologies and Tools for Molecular and Nano-scale Communications. Modeling and Optimization in Science and Technologies, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-50688-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50688-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50686-9

  • Online ISBN: 978-3-319-50688-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics