Skip to main content

Communication of Drug Loaded Nanogels with Cancer Cell Receptors for Targeted Delivery

  • Chapter
  • First Online:
Modeling, Methodologies and Tools for Molecular and Nano-scale Communications

Part of the book series: Modeling and Optimization in Science and Technologies ((MOST,volume 9))

Abstract

The human body is a massive nanoscale molecular communications network composed of billions of interacting cells Drug delivery is an important application of molecular communication. Nanogels are aqueous dispersions of nanoscale size formed by cross-linking of hydrophilic polymers, capable of retaining large amounts of water yet remaining insoluble and maintaining a three-dimensional structure. Nanogel structure enables easy attachment of vector groups for effective communication with cells to reach the desired targeted site. This chapter highlights communication of drug loaded nanogels for targeting cancer through receptors. The chapter critically discusses receptors like- integrin αvβ3, EphA2, folate, Hyaluronan and monoclonal antibody for communication with nanogels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aasheim HC, Delabie J, Finne EF (2005) Ephrin-A1 binding to CD4 + T lymphocytes stimulates migration and induces tyrosine phosphorylation of PYK2. Blood 105:2869–2870

    Article  Google Scholar 

  2. Akyildiz IF, Brunetti F, Blazquez C (2008) Nanonetworks: a new communication paradigm. Comput Netw 52:2260–2279

    Article  Google Scholar 

  3. Atakan B, Akan OB (2010) Deterministic capacity of information flow in molecular nanonetworks. Nano Commun Netw J 1:31–42

    Article  Google Scholar 

  4. Ayame H, Morimoto N, Akioshi K (2008) Self-assembled cationic nanogels for intracellular protein delivery. Bioconjugate Chem 19:882–890

    Article  Google Scholar 

  5. Blanco MD, Guerrero S, Benito M, Fernández A, Teijón C, Olmo R, Katime I, Teijón JM (2011) In vitro and in vivo evaluation of a folate-targeted copolymeric submicrohydrogel based on n-isopropylacrylamide as 5-Fluorouracil delivery. Polymers 3:1107–1125

    Article  Google Scholar 

  6. Brown JM, Giaccia AJ (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58(7):1408–1416

    Google Scholar 

  7. Choi JH, Jang JY, Joung YK, Kwon MH, Park KD (2010) Intracellular delivery and anti-cancer effect of self-assembled heparin-Pluronic nanogels with RNase A. J Control Release 147:420–427

    Article  Google Scholar 

  8. Dickerson EB, Blackburn WH, Smith MH, Kapa LB, Lyon LA, McDonald JF (2010) Chemosensitization of cancer cells by siRNA using targeted nanogel delivery. BMC Cancer 10:10

    Article  Google Scholar 

  9. Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE (2004) EphA2: a determinant of malignant cellular behavior and a potential therapeutic target in pancreatic adenocarcinoma. Oncogene 23:1448–1456

    Article  Google Scholar 

  10. Ghosh SC, Neslihan Alpay S, Klostergaard J (2012) CD44: a validated target for improved delivery of cancer therapeutics. Expert Opin Ther Targets 16(7):635–650

    Article  Google Scholar 

  11. Hilgenbrink AR, Low PS (2005) Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J Pharm Sci 94:2135–2146

    Article  Google Scholar 

  12. Huang SJ, Sun SL, Feng TH, Sung KH, Lui WL, Wang LF (2009) Folate-mediated chondroitin sulfate-Pluronic® 127 nanogels as a drug carrier. Eur J Pharm Sci 38:64–73

    Article  Google Scholar 

  13. Ireton RC, Chen J (2005) EphA2 Receptor Tyrosine Kinase as a Promising Target for Cancer Therapeutics. Curr Cancer Drug Targets 5:149–157

    Article  Google Scholar 

  14. Lee ES, Kim D, Youn YS, Oh KT, Bae YH (2008) A virus mimetic nanogel vehicle. Angew Chem 2008; 120(13): 2452–2455

    Google Scholar 

  15. Li N, Wang J, Yang X, Li L (2011) Novel nanogels as drug delivery systems for poorly soluble anticancer drugs. Colloids Surf B 83:237–244

    Article  Google Scholar 

  16. Low PS, Kularatne SA (2009) Folate-targeted therapeutic and imaging agents for cancer. Curr Opin Chem Biol 13:256–262

    Article  Google Scholar 

  17. Malak D, Akan OB (2012) Molecular communication nanonetworks inside human body. Nano Commun Netw 3:19–35

    Article  Google Scholar 

  18. Melero I, Hervas-Stubbs S, Glennie M, Pardoll DM, Chen L (2007) Immunostimulatory monoclonal antibodies for cancer therapy. Nat Rev Cancer 7(2):95–106

    Article  Google Scholar 

  19. Misra S, Heldin P, Hascall VC, Karamanos NK, Skandalis SS, Markwald RR, Ghatak S (2011) Hyaluronan–CD44 interactions as potential targets for cancer therapy. FEBS J 278(9):1429–1443

    Article  Google Scholar 

  20. Murphy EA, Majeti BK, Mukthavaram R, Acevedo LM, Barnes LA, Cheresh DA (2011) Targeted nanogels: a versatile platform for drug delivery to tumors. Mol Cancer Ther 10(6):972–982

    Article  Google Scholar 

  21. Nakano T, Moore M (2011) Molecular communication paradigm overview. J Next Gener Inf Technolo 2(1):9–16

    Article  Google Scholar 

  22. Nakano T, Moore MJ, Wei Fang, Vasilakos AV, Shuai Jianwei (2012) Molecular communication and networking: opportunities and challenges. IEEE Trans Nanobiosci 11(2):135–148

    Article  Google Scholar 

  23. Nayak S, Lee H, Chmielewski J, Lyon LA (2004) Folate-mediated cell targeting and cytotoxicity using thermoresponsive microgels. J Am Chem Soc 126(33):10258–10259

    Article  Google Scholar 

  24. Nukolova NV, Oberoi HS, Cohen SM, Kabanov AV, Bronich TK (2011) Folate-decorated nanogels for targeted therapy of ovarian cancer. Biomaterials 32:5417–5426

    Article  Google Scholar 

  25. Nukolova NV, Yang Z, Kim JO, Kabanov AV, Bronich TK (2011) Polyelectrolyte nanogels decorated with monoclonal antibody for targeted drug delivery. React Funct Polym 71:315–323

    Article  Google Scholar 

  26. Panyam J, Williams D, Dash A, Leslie-Pelecky D, Labhasetwar V (2004) Solid-state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticles. J Pharm Sci 93(7):1804–1814

    Article  Google Scholar 

  27. Park W, Kim K, Bae B, Kim Y, Na K (2010) Cancer cell specific targeting of nanogels from acetylated hyaluronic acid with low molecular weight. Eur J Pharm Sci 40:367–375

    Article  Google Scholar 

  28. Platt VM, Szoka FC Jr (2008) Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol Pharm 5(4):474–486

    Article  Google Scholar 

  29. Raemdonck K, Demeester J, De Smedt S (2009) Advanced nanogel engineering for drug delivery. Soft Matter 5:707–715

    Article  Google Scholar 

  30. Scott AM, Wolchok JD, Old LJ (2012) Antibody therapy of cancer. Nat Rev Cancer 12(4):278–287

    Article  Google Scholar 

  31. Soni G, Yadav KS (2014) High encapsulation efficiency of poloxamer based injectable thermoresponsive hydrogels of etoposide. Pharm Dev Technol 19(6):651–661

    Article  Google Scholar 

  32. Soni G, Yadav KS (2014) Nanogels as potential nanomedicine carrier for treatment of cancer: A mini review of the state of the art. Saudi Pharm J. doi:10.1016/j.jsps.2014.04.001

    Google Scholar 

  33. Sunderland CJ, Steiert M, Talmadge JE, Derfus AM, Barry SE (2006) Targeted nanoparticles for detecting and treating cancer. Drug Dev Res 67(1):70–93

    Article  Google Scholar 

  34. Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4:528–539

    Article  Google Scholar 

  35. Toole BP (2009) Hyaluronan–CD44 interactions in cancer: paradoxes and possibilities. Clin Cancer Res 15:7462–7468

    Article  Google Scholar 

  36. Vinogradov SV, Batrakova EV, Kabanov AV (2004) Nanogels for oligonucleotide delivery to the brain. Bioconjug. Chem. 15:50–60

    Article  Google Scholar 

  37. Vinogradov SV, Zeman AD, Batrakova EV, Kabanov AV (2005) Polyplex nanogel formulations for drug delivery of cytotoxic nucleoside analogs. J Control Release 107:143–157

    Article  Google Scholar 

  38. Wei X, Senanayake TH, Warren G, Vinogradov SV (2013) Hyaluronic acid-based nanogel-drug conjugates with enhanced anticancer activity designed for the targeting of CD44-positive and drug-resistant tumors. Bioconjugate Chem. 24(4):658–668

    Article  Google Scholar 

  39. Wu W, Shen J, Banerjee P, Zhou S (2010) Core shell hybrid nanogels for integration of optical temperature-sensing, targeted tumor cell imaging, and combined chemo-photothermal treatment. Biomaterials 31:7555–7566

    Article  Google Scholar 

  40. Yadav KS, Jacob S, Sachdeva G, Chuttani K, Mishra AK, Sawant KK (2011) Long circulating PEGylated PLGA nanoparticles of cytarabine for targeting leukemia. J Microencapsul 28(8):729–742

    Article  Google Scholar 

  41. Yoo HS, Park TG (2004) Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Control Release 96:273–283

    Article  Google Scholar 

Download references

Acknowledgements

Dr. K.S. Yadav thanks AICTE, New Delhi, for the award of Research Promotion Scheme project (Ref No. 8023/RID/RPS-71/POLICY III(PVT)/2011–12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khushwant S. Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Soni, G., Yadav, K.S. (2017). Communication of Drug Loaded Nanogels with Cancer Cell Receptors for Targeted Delivery. In: Suzuki, J., Nakano, T., Moore, M. (eds) Modeling, Methodologies and Tools for Molecular and Nano-scale Communications. Modeling and Optimization in Science and Technologies, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-50688-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50688-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50686-9

  • Online ISBN: 978-3-319-50688-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics