Skip to main content

Ultrasonics—An Effective Non-invasive Tool to Characterize Nanofluids

  • Chapter
  • First Online:

Part of the book series: Modeling and Optimization in Science and Technologies ((MOST,volume 9))

Abstract

Nanofluids are smart colloidal suspensions of fine nanomaterials in the size range of 1–100 nm in base fluids. For the last few years, nanofluids have been an important focus of research, due to their superior thermo physical properties and promising heat transfer applications. Regardless of various experimental studies, it is still unclear whether the thermal conductivity enhancement in nanofluids is anomalous, or lies within the predictions of theoretical models. Moreover, most of the reported values on their thermo physical properties are inconsistent, due to the complexity associated with the surface chemistry of nanofluids. In this chapter, the versatility of ultrasonics, as an effective non-invasive tool in characterizing nanofluids, is discussed. The chapter encompasses the significance and measurement methods of various ultrasonic parameters. The ultrasonic investigations, being non-invasive in nature, highly efficient and relatively cheap, can provide a powerful means to explore complex colloidal systems, like nanofluids and ferrofluids.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Philip J, Shima PD (2012) Thermal properties of nanofluids. Adv Colloid Interface Sci 30:183–184

    Google Scholar 

  2. Das SK, Choi SUS, Yu W, Pradeep T (2008) Nanofluids: science and technology. John Wiley & Sons Inc, Hoboken, NJ

    Google Scholar 

  3. Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: Singer A, Wang HP (eds) Developments and applications of non-newtonian flows, vol. 66. American Society of Mechanical Engineers, New York, pp 99–105

    Google Scholar 

  4. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78:718–720

    Article  Google Scholar 

  5. Buongiorno J (2009) A benchmark study on the thermal conductivity of nanofluids. J Appl Phys 106:094312–094312

    Article  Google Scholar 

  6. Kim SJ, Bang IC, Buongiorno J, Hu LW (2007) Study of pool boiling and critical heat flux enhancement in nanofluids. Bull Polish Acad Sci 55:211–216

    Article  Google Scholar 

  7. Gerardi C, Cory D, Buongiorno J, Hu LW, McKrell T (2009) Nuclear magnetic resonance-based study of ordered layering on the surface of alumina nanoparticles in water. Appl Phys Lett 95:253104-1–253104-3

    Google Scholar 

  8. Maxwell JC (1881) A treatise on electricity and magnetism. Clarendon, Oxford

    MATH  Google Scholar 

  9. Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundamen 1:187–191

    Article  Google Scholar 

  10. Patel HE, Das SK, Sundararajan T, Nair AS, George B, Pradeep T (2003) Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects. Appl Phys Lett 83:2931–2933

    Article  Google Scholar 

  11. Hong TK, Yang HS, Choi CJ (2005) Study of the enhanced thermal conductivity of Fe nanofluids. J Appl Phys 97:064311–064311

    Article  Google Scholar 

  12. Kang HU, Kim SH, Oh JM (2006) Estimation of thermal conductivity of nanofluid using experimental effective particle volume. Exp Heat Transf 19:181–191

    Article  Google Scholar 

  13. Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2—water based nanofluids. Int J Therm Sci 44:367–373

    Article  Google Scholar 

  14. Zhang X, Gu H, Fujii M (2006) Experimental study on the effective thermal conductivity and thermal diffusivity of nanofluids. Int J Thermophys 27:569–580

    Article  Google Scholar 

  15. Zhu HT, Zhang CY, Tang YM, Wang JX (2007) Novel Synthesis and thermal conductivity of CuO nanofluid. J Phys Chem C 111:1646–1650

    Article  Google Scholar 

  16. Li Q, Xuan Y, Wang J (2005) Experimental investigations on transport properties of magnetic fluids. Exp Therm Fluid Sci 30:109–116

    Article  Google Scholar 

  17. Chon CH, Kihm KD, Lee SP, Choi SUS (2005) Empirical correlation finding the role of temperature and particle size for nanofluid (A2lO3) thermal conductivity enhancement. Appl Phys Lett 87:153107-1–153107-4

    Article  Google Scholar 

  18. Chopkar M, Das PK, Manna I (2006) Synthesis and characterization of nanofluid for advanced heat transfer applications. Scr Mater 55:549–552

    Article  Google Scholar 

  19. Li CH, Peterson GP (2007) The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids. J Appl Phys 101:044312–044312

    Article  Google Scholar 

  20. Hwang D, Hong KS, Yang HS (2007) Study of thermal conductivity of nanofluids for the application of heat transfer fluids. Thermochim Acta 455:66–69

    Article  Google Scholar 

  21. Sinha K, Kavlicoglu B, Liu Y, Gordaninejad F, Graeve OA (2009) A comparative study of thermal behavior of iron and copper nanofluids. J Appl Phys 106:064307-1–064307-7

    Google Scholar 

  22. Gharagozloo PE, Eaton JK, Goodson KE (2008) Diffusion, aggregation, and the thermal conductivity of nanofluids. Appl Phys Lett 93:103110-1–103110-3

    Article  Google Scholar 

  23. Shalkevich N, Escher W, Burgi T, Michel B, Ahmed LS, Poulikakos D (2010) On the thermal conductivity of gold nanoparticle colloids. Langmuir 26:663–670

    Article  Google Scholar 

  24. Rusconi R, Rodari E, Piazza R (2006) Optical measurements of the thermal properties of nanofluids. Appl Phys Lett 89:261916-1–261916-3

    Google Scholar 

  25. Singh D, Timofeeva E, Yu W, Routbort J, France D, Smith D et al (2009) An investigation of silicon carbide-water nanofluid for heat transfer applications. J Appl Phys 105:064306

    Article  Google Scholar 

  26. Venerus DC, Kabadi MS, Lee S, Luna VP (2006) Study of thermal transport in nanoparticle suspensions using forced Rayleigh scattering. J Appl Phys 100:094310-1–094310-5

    Article  Google Scholar 

  27. Zhang X, Gu H, Fujii M (2006) Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. J Appl Phys 100:044325-1–044325-5

    Google Scholar 

  28. Ju YS, Kim J, Hung MT (2008) Experimental study of heat conduction in aqueous suspensions of aluminum oxide nanoparticles. ASME J Heat Transf 130:092403-1–092403-6

    Google Scholar 

  29. Putnam SA, Cahill DG, Braun PV, Ge Z, Shimmin RG (2006) Thermal conductivity of nanoparticle suspensions. J Appl Phys 99:084308-1–084308-6

    Article  Google Scholar 

  30. Timofeeva EV, Gavrilov AN, McCloskey JM, Tolmachev YV, Sprunt S, Lopatina LM, Selinger JV (2007) Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev E 76:061203-1–061203-1-16

    Google Scholar 

  31. Pastoriza-Gallego MJ, Lugo L, Legido JL, Piñeiro MM (2011) Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids. Nanoscale Res Lett 6:221-1–221-11

    Google Scholar 

  32. Rayleigh L (1896) The theory of sound, 2nd edn. Macmillan, New York

    MATH  Google Scholar 

  33. Dukhin AS, Goetz PJ (2010) Characterization of liquids, nano and microparticulates and porous bodies using ultrasound, 2nd edn. Elsevier, New York

    Google Scholar 

  34. Nabeel Rashin M, Hemalatha J (2011) Ultrasonic studies and microchannel flow behavior of copper oxide nanofluid. AIP Conf Proc 1349:335–335

    Article  Google Scholar 

  35. Singh DK, Pandey DK, Yadav RR (2009) An ultrasonic characterization of ferrofluid. ultrasonics 49:634–637

    Google Scholar 

  36. Nabeel Rashin M, Hemalatha J (2013) Acoustical studies on the interaction of copper oxide—ethylene glycol nanofluid. In: Giri PK, Goswami DK, Perumal A (eds) Advanced nanomaterials and nanotechnology. Springer, Berlin, Heidelberg, New York, pp 225–229

    Chapter  Google Scholar 

  37. Hornowski T, Józefczak A, Łabowski M, Skumiel A (2008) Ultrasonic determination of the particle size distribution in water-based magnetic liquid. Ultrasonics 48:594–597

    Article  Google Scholar 

  38. Sayan P, Ulrich J (2002) The effect of particle size and suspension density on the measurement of ultrasonic velocity in aqueous solutions. Chem Eng Process 41:281–287

    Article  Google Scholar 

  39. Józefczak A, Skumiel A (2011) Ultrasonic investigation of magnetic nanoparticles suspension with PEG biocompatible coating. J Magn Magn Mater 323:1509–1516

    Article  Google Scholar 

  40. Motozawa M, Iizuka Y, Sawada T (2008) Experimental measurements of ultrasonic propagation velocity and attenuation in a magnetic fluid. J Phys: Condens Matter 20:204117–1–204117-5

    Google Scholar 

  41. Hemalatha J, Prabhakaran T, Nalini RP (2011) A comparative study on particle–fluid interactions in micro and nanofluids of aluminium oxide. Microfluid Nanofluid 10:263–270

    Article  Google Scholar 

  42. Shima PD, Philip J (2011) Tuning of thermal conductivity and rheology of nanofluids using an external stimulus. J Phys Chem C 115:20097–20104

    Article  Google Scholar 

  43. Philip J, Shima PD, Raj B (2008) Nanofluid with tunable thermal properties. Appl Phys Lett 92:043108–1–043108-3

    Google Scholar 

  44. Philip J, Jaykumar T, Kalyanasundaram P, Raj B (2003) A tunable optical filter. Meas Sci Technol 14:1289–1294

    Article  Google Scholar 

  45. Józefczak A (2003) The time dependence of the changes of ultrasonic wave velocity in ferrofluid under parallel magnetic field. J Magn Magn Mater 256:267–270

    Article  Google Scholar 

  46. Skumiel A, Hornowski T, Józefczak A (2000) Investigation of magnetic fluids by ultrasonic and magnetic methods. Ultrasonics 38:864–867

    Article  Google Scholar 

  47. Muller HW, Jiang Y, Liu M (2003) Sound damping in ferrofluids: magnetically enhanced compressional viscosity. Phys Rev E 67:031201–1–031201-5

    Google Scholar 

  48. Sinha DN (1998) Non-invasive identification of fluids by swept-frequency acoustic interferometry. US Patent 5, 767, 407, 1998

    Google Scholar 

  49. McClements JD, Powey MJW (1989) Scattering of ultrasound by emulsions. J Phys D Appl Phys 22:38–47

    Article  Google Scholar 

  50. McClements JD (1998) Ultrasonic characterization of food emulsions. In Hackley VA, Texter J (eds) Ultrasonic and dielectric characterization techniques for suspended particulates, Am Ceramic Soc, pp 305–317

    Google Scholar 

  51. McClements JD (1996) Principles of ultrasonic droplet size determination in emulsions. Langmuir 12:3454–3461

    Article  Google Scholar 

  52. Sette D (1968) Ultrasonic studies. In: Physics of simple liquids. Amsterdam, North-Holland

    Google Scholar 

  53. Pellam JR, Galt JK (1946) Ultrasonic propagation in liquids: application of pulse technique to velocity and absorption measurement at 15 megacycles. J Chem Phys 14:608–613

    Article  Google Scholar 

  54. Pinkerton JMM (1947) A pulse method for measurement of ultrasonic absorption in liquids. Nature 160:128–129

    Article  Google Scholar 

  55. Andreae J, Joyce P (1962) 30 to 230 Megacycle pulse technique for ultrasonic absorption measurements in liquids. Br J Appl Phys 13:462–467

    Article  Google Scholar 

  56. Nabeel Rashin M, Hemalatha J (2012) Magnetic and ultrasonic investigations on magnetite nanofluids. Ultrasonics 52:1024–1029

    Article  Google Scholar 

  57. Nabeel Rashin M, Hemalatha J (2012) Acoustic study on the interactions of coconut oil based copper oxide nanofluid. Int J Eng Appl Sci 6:216–220

    Google Scholar 

  58. Nabeel Rashin M, Hemalatha J (2014) Magnetic and ultrasonic studies on stable cobalt ferrite magnetic nanofluid. Ultrasonics 54:834–840

    Article  Google Scholar 

  59. Nabeel Rashin M, Hemalatha J (2013) Synthesis and viscosity studies of novel ecofriendly ZnO–coconut oil nanofluid. Exp Therm Fluid Sci 51:312–318

    Article  Google Scholar 

  60. Józefczak A, Hornowski T, Zavisova V, Skumiel A, Kubovcikova M, Timko M (2014) Acoustic wave in a suspension of magnetic nanoparticle with sodium oleate coating. J Nanopart Res 16:2271

    Article  Google Scholar 

  61. Nabeel Rashin M, Hemalatha J (2014) A novel ultrasonic approach to determine thermal conductivity in CuO–ethylene glycol nanofluids. J Mol Liq 197:257–262

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hemalatha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nabeel Rashin, M., Hemalatha, J. (2017). Ultrasonics—An Effective Non-invasive Tool to Characterize Nanofluids. In: Suzuki, J., Nakano, T., Moore, M. (eds) Modeling, Methodologies and Tools for Molecular and Nano-scale Communications. Modeling and Optimization in Science and Technologies, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-50688-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50688-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50686-9

  • Online ISBN: 978-3-319-50688-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics