Skip to main content

Nanoscale Communications Based on Fluorescence Resonance Energy Transfer (FRET)

  • Chapter
  • First Online:
  • 910 Accesses

Part of the book series: Modeling and Optimization in Science and Technologies ((MOST,volume 9))

Abstract

Nanoscale communication is a novel and quite interdisciplinary research area which aims to design and develop communication networks among nano-size machines to extend their limited capabilities for groundbreaking biomedical, industrial and environmental applications [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Akyildiz IF, Jornet JM, Pierobon M (2011) Nanonetworks: a new frontier in communications. Commun ACM 54(11):84–89

    Article  Google Scholar 

  2. Allen DG, Blinks JR (1978) Calcium transients in aequorin-injected frog cardiac muscle. Nature 273(5663):509–513

    Article  Google Scholar 

  3. Badali D, Gradinaru CC (2011) The effect of Brownian motion of fluorescent probes on measuring nanoscale distances by Förster resonance energy transfer. J Chem Phys 134(22):225102

    Article  Google Scholar 

  4. Contag CH, Bachmann MH (2002) Advances in in vivo bioluminescence imaging of gene expression. Ann Rev Biomed Eng 4:235–260

    Article  Google Scholar 

  5. Cover TM, Thomas JA (1991) Elements of information theory. Wiley, New York

    Book  MATH  Google Scholar 

  6. Didenko VV (2001) DNA probes using fluorescence resonance energy transfer (FRET): designs and applications. Biotechniques 31(5):1106–1121

    Google Scholar 

  7. Förster T (1948) Zwischenmolekulare energiewanderung und fluoreszenz. Ann Phys 437(1–2):55–75

    Article  MATH  Google Scholar 

  8. Heilemann M, Tinnefeld P, Mosteiro Parajo MG et al (2004) Multistep energy transfer in single molecular photonic wires. J Am Chem Soc 126:6514–6515

    Article  Google Scholar 

  9. Kuscu M, Akan OB (2011) A nanoscale communication channel with fluorescence resonance energy transfer (FRET). In: Proceedings of 1st IEEE international workshop molecular nano scale communication/IEEE conference on computer communication workshops, Shanghai, China, April 2011

    Google Scholar 

  10. Kuscu M, Akan OB (2012) A physical channel model and analysis for nanoscale molecular communications with Förster resonance energy transfer (FRET). IEEE Trans Nanotechnol 11(1):200–207

    Article  Google Scholar 

  11. Kuscu M, Akan OB (2013) Multi-step FRET-based long-range nanoscale communication channel. IEEE J Sel Areas Commun 31(12):715–725

    Article  Google Scholar 

  12. Kuscu M, Akan OB (2014) A communication theoretical analysis of FRET-based mobile ad hoc molecular nanonetworks. IEEE Trans Nanobiosci 13(3):255–266

    Article  Google Scholar 

  13. Kuscu M, Akan OB (2014) FRET-based nanoscale point-to-point and broadcast communications with multi-exciton transmission and channel routing. IEEE Trans Nanobiosci 13(3):315–326

    Article  Google Scholar 

  14. Kuscu M, Akan OB (2014) Coverage and throughput analysis for FRET-based mobile molecular sensor/actor nanonetworks. Nano Commun Netw J (Elsevier) 5(1–2):45–53

    Article  Google Scholar 

  15. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, Baltimore

    Book  Google Scholar 

  16. Patterson GH, Piston DW, Barisas BG (2000) Förster distances between green fluorescent protein pairs. Anal Biochem 284(2):438–440

    Article  Google Scholar 

  17. Samia ACS, Chen X, Burda C (2003) Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc 125(51):15736–15737

    Google Scholar 

  18. Sekatskii SK, Chergui M, Dietler G (2003) Coherent fluorescence resonance energy transfer: construction of nonlocal multiparticle entangled states and quantum computing. Europhys Lett 63:21

    Article  Google Scholar 

  19. Stryer L (1978) Fluorescence energy transfer as a spectroscopic ruler. Ann Rev Biochem 47:819–846

    Article  Google Scholar 

  20. Stryer L (1982) Diffusion-enhanced fluorescence energy transfer. Ann Rev Biophys Bioeng 11:203–222

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Kuscu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kuscu, M., Akan, O.B. (2017). Nanoscale Communications Based on Fluorescence Resonance Energy Transfer (FRET). In: Suzuki, J., Nakano, T., Moore, M. (eds) Modeling, Methodologies and Tools for Molecular and Nano-scale Communications. Modeling and Optimization in Science and Technologies, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-50688-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50688-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50686-9

  • Online ISBN: 978-3-319-50688-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics