Skip to main content

Abstract

The goal of this chapter is to review the process, issues, and challenges of energy harvesting in nanonetworks, composed of nanonodes that are nano to micro meters in size. A nanonode consisting of nan-memory, a nano-processor, nano-harvesters, ultra nano-capacitor, and a nano-transceiver harvests the energy required for its operations, such as processing and communication. The energy harvesting process in nanonetworks differs from traditional networks (e.g. wireless sensor networks, RFID) due to their unique characteristics such as nanoscale, communication model, and molecular operating environment. After reviewing the energy harvesting process and sources, we introduce the communication model, which is the main source of energy consumption for nanonodes. This is followed by a discussion on the models for joint energy harvesting and consumption processes. Finally, we describe approaches for optimizing the energy consumption process, which includes optimum data packet design, optimal energy utilization, energy consumption scheduling, and energy-harvesting-aware protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Lexicographic optimization is a form of multi-criteria (multi-objective) optimization in which the various objectives under consideration cannot be quantitatively traded off between each other, at least not in a meaningful and numerically tractable way. The lexicographic method assumes that the objectives can be ranked in the order of importance. It can be assumed, without loss of generality, that the k objective functions are in the order of importance so that \(f_1\) is the most important and \(f_k\) the least important to the decision maker. Then, the lexicographic method consists of solving a sequence of single objective optimization problems [47].

References

  1. Akyildiz IF, Brunetti F, Blazquez C (2008) Nanonetworks: a new communication paradigm. Comput Netw 52(12):2260–2279. doi:10.1016/j.comnet.2008.04.001

    Article  Google Scholar 

  2. Akyildiz IF, Jornet JM (2010) Electromagnetic wireless nanosensor networks. Nano Commun Netw 1(1):3–19. doi:10.1016/j.nancom.2010.04.001

    Article  Google Scholar 

  3. Avouris P (2009) Carbon nanotube electronics and photonics. Phys Today 62, 3440

    Google Scholar 

  4. Chalasani S, Conrad J (2008) A survey of energy harvesting sources for embedded systems. In: IEEE Southeastcon, pp 442–447 (2008). doi:10.1109/SECON.2008.4494336

  5. Chi K, Zhu Y, Jiang X, Tian X (2013) Optimal coding for transmission energy minimization in wireless nanosensor networks. Nano Commun Netw. doi:10.1016/j.nancom.2013.07.001

  6. Christ A, Douglas M, Roman J, Cooper E, Sample A, Waters B, Smith J, Kuster N (2013) Evaluation of wireless resonant power transfer systems with human electromagnetic exposure limits. IEEE Trans Electromag Compatib 55(2):265–274. doi:10.1109/TEMC.2012.2219870

    Google Scholar 

  7. Deb K (2005) Multi-objective optimization. In: Burke, E Kendall G (eds) Search methodologies, pp 273–316. Springer US. doi:10.1007/0-387-28356-0_10

  8. Fontana R (2004) Recent system applications of short-pulse ultra-wideband (UWB) technology. IEEE Trans Microw Theory Techn 52(9):2087–2104. doi:10.1109/TMTT.2004.834186

    Article  Google Scholar 

  9. Gatzianas M, Georgiadis L, Tassiulas L (2010) Control of wireless networks with rechargeable batteries. IEEE Trans Wirel Commun 9(2):581–593. doi:10.1109/TWC.2010.080903

    Article  Google Scholar 

  10. Gilbert J, Balouchi F (2008) Comparison of energy harvesting systems for wireless sensor networks. Int J Autom Comput 5:334–347. doi:10.1007/s11633-008-0334-2

    Article  Google Scholar 

  11. Gorlatova M, Sarik J, Cong M, Kymissis I, Zussman G (2013) Movers and shakers: kinetic energy harvesting for the internet of things. http://arxiv.org/pdf/1307.0044v1.pdf

  12. Gorlatova M, Wallwater A, Zussman G (2011) Networking low-power energy harvesting devices: measurements and algorithms. In: Proceedings of IEEE INFOCOM, pp 1602–1610. doi:10.1109/INFCOM.2011.5934952

  13. Gorlatova M, Wallwater A, Zussman G (2012) Networking low-power energy harvesting devices: measurements and algorithms. IEEE Trans Mobile Comput 12(9):1853–1865. doi:10.1109/TMC.2012.154

    Article  Google Scholar 

  14. Gupta A, Mohapatra P (2007) A survey on ultra wide band medium access control schemes. Comput Netw 51(11):2976–2993. doi:10.1016/j.comnet.2006.12.008

    Article  Google Scholar 

  15. Hansen BJ, Liu Y, Yang R, Wang ZL (2010) Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 4(7):3647–3652

    Article  Google Scholar 

  16. Hoogers G (2002) Fuel cell technology handbook. Handbook series for mechanical engineering. Taylor & Francis

    Google Scholar 

  17. Hsu J, Zahedi S, Kansal A, Srivastava M, Raghunathan V (2006) Adaptive duty cycling for energy harvesting systems. In: Proceedings of the international symposium on low power electronics and design, pp 180–185. doi:10.1109/LPE.2006.4271832

  18. Hu Y, Zhang Y, Xu C, Zhu G, Wang ZL (2010) High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display. Nano Lett 10(12):5025–5031

    Article  Google Scholar 

  19. Ivanov I, Vidakovi-Koch T, Sundmacher K (2010) Recent advances in enzymatic fuel cells: experiments and modeling. Energies 3(4):803–846

    Google Scholar 

  20. Jornet J, Akyildiz I (2010) Channel capacity of electromagnetic nanonetworks in the terahertz band. In: IEEE international conference on communications (ICC), pp 1 –6. doi:10.1109/ICC.2010.5501885

  21. Jornet J, Akyildiz I (2011) Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band. IEEE Trans Wirel Commun 10(10):3211–3221. doi:10.1109/TWC.2011.081011.100545

    Article  Google Scholar 

  22. Jornet J, Akyildiz I (2011) Low-weight channel coding for interference mitigation in electromagnetic nanonetworks in the terahertz band. In: IEEE international conference on communication (ICC), pp 1–6. doi:10.1109/icc.2011.5962987

  23. Jornet J, Akyildiz I (2012) Joint energy harvesting and communication analysis for perpetual wireless nanosensor networks in the Terahertz band. IEEE Trans Nanotechnol 11(3):570–580. doi:10.1109/TNANO.2012.2186313

    Article  Google Scholar 

  24. Jornet JM, Akyildiz IF (2010) Graphene-based nano-antennas for electromagnetic nanocommunications in the terahertz band. In: Proceedings of the European conference on antennas and propagation

    Google Scholar 

  25. Jornet JM, Akyildiz IF (2011) Information capacity of pulse-based wireless nanosensor networks. In: Proceedings of IEEE SECON, pp 80–88

    Google Scholar 

  26. Jornet JM, Pujol JC, Pareta JS (2012) PHLAME: a physical layer aware MAC protocol for electromagnetic nanonetworks in the terahertz band. Nano Commun Netw 3(1):74–81. doi:10.1016/j.nancom.2012.01.006

    Article  Google Scholar 

  27. Kansal A, Hsu J, Zahedi S, Srivastava MB (2007) Power management in energy harvesting sensor networks. ACM Trans Embed Comput Syst 6(4). doi:10.1145/1274858.1274870

  28. Kar K, Krishnamurthy A, Jaggi N (2006) Dynamic node activation in networks of rechargeable sensors. IEEE/ACM Trans Netw 14(1):15–26. doi:10.1109/TNET.2005.863710

    Article  Google Scholar 

  29. Khouzani M, Sarkar S, Kar K (2011) Optimal routing and scheduling in multihop wireless renewable energy networks. In: Proceedings of sixth information theory and applications workshop (ITA)

    Google Scholar 

  30. Kim P (2008) Toward carbon based electronics. In: Proceedings of device research conference, p 9. doi:10.1109/DRC.2008.4800712

  31. Kocaoglu M, Akan O (2012) Minimum energy coding for wireless nanosensor networks. In: Proceedings of IEEE INFOCOM, pp 2826–2830. doi:10.1109/INFCOM.2012.6195709

  32. Li Z, Wang ZL (2011) Air/liquid-pressure and heartbeat-driven flexible fiber nanogenerators as a micro/nano-power source or diagnostic sensor. Adv Mater 23(1):84–89

    Article  MathSciNet  Google Scholar 

  33. Lin YM et al (2010) 100-GHz transistors from wafer-scale epitaxial graphene. Science 327:662

    Article  Google Scholar 

  34. Liu RS, Fan KW, Zheng Z, Sinha P (2011) Perpetual and fair data collection for environmental energy harvesting sensor networks. IEEE/ACM Trans Netw 19(4):947–960. doi:10.1109/TNET.2010.2091280

    Article  Google Scholar 

  35. Luo Y, Zhang J, Letaief KB (2012) Training optimization for energy harvesting communication systems. In: Proceedings of IEEE Globecom

    Google Scholar 

  36. Luryi S, Xu J, Zaslavsky A (2007) Future trends in microelectronics: up the nano creek. Wiley, IEEE

    Google Scholar 

  37. MacVittie K, Halamek J, Halamkova L, Southcott M, Jemison WD, Lobel R, Katz E (2013) From “cyborg” lobsters to a pacemaker powered by implantable biofuel cells. Energy Environ Sci 6:81–86. doi:10.1039/C2EE23209J

    Article  Google Scholar 

  38. Mercier PP, Lysaght AC, Bandyopadhyay S, Stankovic APCKM (2012) Energy extraction from the biologic battery in the inner ear. Nat Biotechnol 30:1240–1243

    Google Scholar 

  39. Mitcheson P (2010) Energy harvesting for human wearable and implantable bio-sensors. In: IEEE engineering in medicine and biology society, pp 3432–3436 (2010)

    Google Scholar 

  40. Mohrehkesh S, Weigle MC (2013) Optimizing communication energy consumption in perpetual wireless nanosensor networks. In: Proceedings of the IEEE Globecom, Atlanta, GA, pp 545–550

    Google Scholar 

  41. Mohrehkesh S, Weigle MC (2014) Optimizing energy consumption in terahertz band nanonetworks. To appear in IEEE JSAC: molecular, biological, and multi-scale communications series

    Google Scholar 

  42. Mohrehkesh S, Weigle MC (2014) RIH-MAC: receiver-initiated harvesting-aware MAC for nanonetworks. In: Proceedings of the first ACM annual international conference on nanoscale computing and communication (NANOCOM), pp 6:1–6:9

    Google Scholar 

  43. Noh DK, Abdelzaher TF (2012) Efficient flow-control algorithm cooperating with energy allocation scheme for solar-powered WSNs. Wirel Commun Mobile Comput 12(5):379–392. doi:10.1002/wcm.965

    Article  Google Scholar 

  44. Pan C, Li Z, Guo W, Zhu J, Wang ZL (2011) Fiber-based hybrid nanogenerators for/as self-powered systems in biological liquid. Angewandte Chemie 123(47):11388–11392

    Article  Google Scholar 

  45. Parks A, Sample A, Zhao Y, Smith J (2013) A wireless sensing platform utilizing ambient RF energy. In: IEEE topical conference on wireless sensors and sensor networks (WiSNet), pp 127–129. doi:10.1109/WiSNet.2013.6488656

  46. Pierobon M, Akyildiz I (2013) Capacity of a diffusion-based molecular communication system with channel memory and molecular noise. IEEE Trans Inf Theory 59(2):942–954. doi:10.1109/TIT.2012.2219496

    Article  MathSciNet  Google Scholar 

  47. Rentmeesters M, Tsai W, Lin KJ (1996) A theory of lexicographic multi-criteria optimization. In: Proceedings of second IEEE international conference on engineering of complex computer systems, pp 76–79. doi:10.1109/ICECCS.1996.558386

  48. Roundy S (2005) On the effectiveness of vibration-based energy harvesting. J Intell Mater Syst Struct 16(10):809–823. doi:10.1177/1045389X05054042

    Article  Google Scholar 

  49. Roundy S, Leland E, Baker J, Carleton E, Reilly E, Lai E, Otis B, Rabaey J, Wright P, Sundararajan V (2005) Improving power output for vibration-based energy scavengers. IEEE Pervasive Comput 4(1):28–36

    Article  Google Scholar 

  50. Roundy S, Wright P, Rabaey J (2004) Energy scavenging for wireless sensor networks: with special focus on vibrations. Kluwer Academic Publishers

    Google Scholar 

  51. Roundy S, Wright PK, Rabaey J (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 26(11):1131–1144. doi:10.1016/S0140-3664(02)00248-7

    Article  Google Scholar 

  52. Sensale-Rodriguez B, Yan R, Kelly MM, Fang T, Tahy K, Hwang WS, Jena D, Liu L, Xing HG (2012) Broadband graphene terahertz modulators enabled by intraband transitions. Nat Commun

    Google Scholar 

  53. Sharma V, Mukherji U, Joseph V, Gupta S (2010) Optimal energy management policies for energy harvesting sensor nodes. IEEE Trans Wirel Commun 9(4):1326–1336. doi:10.1109/TWC.2010.04.080749

    Article  Google Scholar 

  54. Shenck N, Paradiso J (2001) Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro 21(3):30–42. doi:10.1109/40.928763

    Article  Google Scholar 

  55. Starner T (1996) Human-powered wearable computing. IBM Syst J 35(34):618–629. doi:10.1147/sj.353.0618

    Article  Google Scholar 

  56. Sudevalayam S, Kulkarni P (2011) Energy harvesting sensor nodes: survey and implications. IEEE Commun Surv Tutor 13(3):443–461. doi:10.1109/SURV.2011.060710.00094

    Article  Google Scholar 

  57. Wang P, Jornet JM, Malik MA, Akkari N, Akyildiz IF (2013) Energy and spectrum-aware MAC protocol for perpetual wireless nanosensor networks in the terahertz band. Ad Hoc Netw 11(8):2541–2555. doi:10.1016/j.adhoc.2013.07.002

    Article  Google Scholar 

  58. Wang ZL, Wu W (2012) Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angewandte Chemie International Edition 51(47):11700–11721

    Article  Google Scholar 

  59. Wu K, Jiang Y, Marinakis D (2012) A stochastic calculus for network systems with renewable energy sources. In: Proceedings of IEEE conference on computer communications workshops (INFOCOM Workshops), pp 109–114. doi:10.1109/INFCOMW.2012.6193470

  60. Xu S, Hansen BJ, Wang ZL (2010) Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nat Commun 1

    Google Scholar 

  61. Zungeru AM, Ang LM, Prabaharan S, Seng KP (2012) Chapter 13. Radio frequency energy harvesting and management for wireless sensor networks. CRC Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahram Mohrehkesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mohrehkesh, S., Weigle, M.C., Das, S.K. (2017). Energy Harvesting in Nanonetworks. In: Suzuki, J., Nakano, T., Moore, M. (eds) Modeling, Methodologies and Tools for Molecular and Nano-scale Communications. Modeling and Optimization in Science and Technologies, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-50688-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50688-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50686-9

  • Online ISBN: 978-3-319-50688-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics