Skip to main content

Bioindication-Based Approaches for Sustainable Management of Urban Ecosystems

  • Chapter
  • First Online:
Book cover Green Technologies and Environmental Sustainability

Abstract

Urbanized areas are covering less than 3% of the land, but the majority of Earth’s population and industry is concentrated at these territories. There is an urgent need for development of a comprehensive approach to the assessment of environmental quality in these areas. Bioindication allows estimating the entire complex of negative factors simultaneously. However, there are still large gaps in our knowledge of the urban ecosystem functioning. This chapter aimed to review the existing approaches to the bioindication of urban areas, i.e., microbial and plant bioindicators, as well as complexity of urban ecosystem, soil and its types, anthropogenic impacts, pollutants, effect on microbial community, other existing problems in this field and suggest the possible ways to solve them. The development of reliable bioindicators used on the basis of systematic approach would contribute greatly to rational land use and sustainable functioning of the urban environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aichner B, Glaser B, Zech W (2007) Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in urban soils from Kathmandu, Nepal. Org Geochem 38(4):700–715

    Article  Google Scholar 

  • Akbari H, Pomerantz M, Taha H (2001) Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Sol Energy 70(3):295–310

    Article  Google Scholar 

  • Alberti Marina A, Marzluff JM, Shulenberger E et al (2003) Integrating humans into ecology: opportunities and challenges for studying urban ecosystems. Bioscience 53(12):1169–1179

    Article  Google Scholar 

  • Alcoforado MJ, Andrade H (2008) Global warming and the urban heat island. In: Urban ecology. Springer, New York, p 249–262

    Google Scholar 

  • Alloway BJ (2013) Sources of heavy metals and metalloids in soil/heavy metals in soils. Springer, Dordrecht, pp. 35–36

    Book  Google Scholar 

  • Amossé J, Dózsa-Farkas K, Boros G et al (2016) Patterns of earthworm, enchytraeid and nematode diversity and community structure in urban soils of different ages. Eur J Soil Biol 73:46–58

    Article  Google Scholar 

  • Anderson J, Domsch KH (1978) A physiological method for quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10:215–221

    Article  Google Scholar 

  • Andres-Abellan M, Del Alamo JB, Landete-Castillejos T et al (2005) Impact of visitors on soil and vegetation of the recreational area “Nachimiento Del Rio Mundo” (Castilla-La Mancha, Spain). Environ Monit Assess 101:55–67

    Google Scholar 

  • Anne Naeth M, Archibald HA, Nemirsky CL et al (2012) Proposed classification for human modified soils in Canada: anthroposolic order. Can J Soil Sci 92(1):7–18

    Article  Google Scholar 

  • Arden S, Ma XC, Brown M (2014) An ecohydrologic model for a shallow groundwater urban environment. Water Sci Technol 70(11):1789–1797

    Article  Google Scholar 

  • Bach HJ, Munch JC (2000) Identification of bacterial sources of soil peptidases. Biol Fertil Soils 31:219–224

    Article  Google Scholar 

  • Bäckström M, Karlsson S, Bäckman L et al (2004) Mobilisation of heavy metals by deicing salts in a roadside environment. Water Res 38(3):720–732

    Article  Google Scholar 

  • Bérard A, Capowiez L, Mombo S et al (2016) Soil microbial respiration and PICT responses to an industrial and historic lead pollution: a field study. Environ Sci Pollut Res 23(5):4271–4281

    Article  Google Scholar 

  • Blagodatskaya E, Kuzyakov Y (2013) Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biol Biochem 67:192–211

    Article  Google Scholar 

  • Blume HP (1986) Characteristics of urban soils/man and the biosphere, edited by the German National Committee. International scientific workshop on soils and soil zoology in urban systems as a basis for management and use of green/open spaces. UNESCO, Berlin, pp. 23–46

    Google Scholar 

  • Bockheim JG (1974) Nature and properties of highly-disturbed urban soils. In: Agronomy Abstracts, Madison. 161p

    Google Scholar 

  • Bolund P, Hunhammar S (1999) Ecosystem services in urban areas. Ecol Econ 29(2):293–301

    Article  Google Scholar 

  • Brookes PC et al (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17(6):837–842

    Article  Google Scholar 

  • Burghardt W (1996) Böden und Böden in der Stadt. Urbaner Bodenschutz, Springer, New York, pp. 7–24

    Google Scholar 

  • Cejudo FJ, Paneque ANTONIO (1986) Short-term nitrate (nitrite) inhibition of nitrogen fixation in Azotobacter chroococcum. J Bacteriol 165(1):240–243

    Article  Google Scholar 

  • Černohlávková J, Hofman J, Bartoš T et al (2008) Effects of road deicing salts on soil microorganisms. Plant Soil Environ 11:479–485

    Google Scholar 

  • Chapin FS III, Matson PA, Vitousek P (2011) Principles of terrestrial ecosystem ecology. Springer Science and Business Media, New York

    Book  Google Scholar 

  • Craul PJ (1985a) A description of urban soils and their desired characteristics. J Arboric 11:330–339

    Google Scholar 

  • Craul PJ (1985b) Urban soils. METRIA (5):45–61

    Google Scholar 

  • Cui L, Yan J, Yang Y et al (2013) Influence of biochar on microbial activities of heavy metals contaminated paddy fields. Bioresources 8(4):5536–5548

    Article  Google Scholar 

  • de Almeida RF, Naves ER, da Mota RP (2015) Soil quality: enzymatic activity of soil β-glucosidase. Global J Agricul Res Rev 3(2):146–150

    Google Scholar 

  • Dimoudi A, Kantzioura A, Zoras S et al (2013) Investigation of urban microclimate parameters in an urban center. Energ Buildings 64:1–9

    Article  Google Scholar 

  • Dobrovolsky GV, Nikitin ED (eds) (1990) The functions of soils in the biosphere and ecosystems. Nauka, Moscow, p 150

    Google Scholar 

  • Dorney RS (1977) Biophysical and cultural-historic land classification and mapping for Canadian urban and urbanizing landscapes. In: Wiken EB, Ironside GT (eds) Ecological (biophysical) land classification in urban areas. Environment Canada, Ottawa, ON, pp 57–71

    Google Scholar 

  • Elless MP, Ferguson BW, Bray CA et al (2008) Collateral benefits and hidden hazards of soil arsenic during abatement assessment of residential lead hazards. Environ Pollut 156(1):20–28

    Article  Google Scholar 

  • Filip Z (2002) International approach to assessing soil quality by ecologically-related biological parameters. Agric Ecosyst Environ 88(2):169–174

    Article  Google Scholar 

  • Gilbert NI, Correia RA, Silva JP et al (2016) Are white storks addicted to junk food? Impacts of landfill use on the movement and behaviour of resident white storks (Ciconia ciconia) from a partially migratory population. Mov Ecol 4(1):1

    Article  Google Scholar 

  • Gil-Sotres F et al (2005) Different approaches to evaluating soil quality using biochemical properties. Soil Biol Biochem 37(5):877–887

    Article  Google Scholar 

  • Gorbov SN, Bezuglova OS, Varduni TV et al (2015) Genotoxicity and contamination of natural and anthropogenically transformed soils of the city of Rostov-on-Don with heavy metals. Eurasian Soil Sci 48(12):1383–1392

    Article  Google Scholar 

  • Gorovtsov AV, Polyakova AV, Vnukov VV (2013) The structural parameters of microbial communities of Rostov-on-Don soils as an instrument for monitoring of anthropogenically-transformed soils condition. Polythematic Electronic Scientific Journal of Kuban State Agricultural University 89(5):1–13

    Google Scholar 

  • Gülser F, Erdoğan E (2008) The effects of heavy metal pollution on enzyme activities and basal soil respiration of roadside soils. Environ Monit Assess 145(1–3):127–133

    Article  Google Scholar 

  • Hijano CF, Dominguez MDP, Gimenez RG et al (2005) Higher plants as bioindicators of sulphur dioxide emissions in urban environments. Environ Monit Assess 111:75–88

    Article  Google Scholar 

  • Islam KR, Weil RR (1998) Microwave irradiation of soil for routine measurement of microbial biomass carbon. Biol Fertil Soils 27(4):408–416

    Article  Google Scholar 

  • Janhäll S (2015) Review on urban vegetation and particle air pollution—deposition and dispersion. Atmos Environ 105:130–137

    Article  Google Scholar 

  • Jo HK (2002) Impacts of urban greenspace on offsetting carbon emissions for middle Korea. J Environ Manag 64(2):115–126

    Article  Google Scholar 

  • Jooste A et al (2015) Sharptooth catfish shows its metal: a case study of metal contamination at two impoundments in the Olifants River, Limpopo river system, South Africa. Ecotoxicol Environ Saf 112:96–104

    Article  Google Scholar 

  • Juwarkar AA, Nair A, Dubey KV et al (2007) Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 68:1996–2002

    Article  Google Scholar 

  • Knight A, Cheng Z, Grewal SS et al (2013) Soil health as a predictor of lettuce productivity and quality: a case study of urban vacant lots. Urban Ecosyst 16(3):637–656

    Article  Google Scholar 

  • Krauss M, Wilcke W (2003) Polychlorinated naphthalenes in urban soils: analysis, concentrations, and relation to other persistent organic pollutants. Environ Pollut 122(1):75–89

    Article  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    Article  Google Scholar 

  • Lambert TW, Lane S (2004) Lead, arsenic and polycyclic aromatic hydrocarbons in soil and house dust in the communities surrounding the Sydney, Nova Scotia, tar ponds. Environ Health Perspect 112:35–41

    Article  Google Scholar 

  • Lenart A, Wolny-Koładka K (2013) The effect of heavy metal concentration and soil pH on the abundance of selected microbial groups within ArcelorMittal Poland steelworks in Cracow. Bull Environ Contam Toxicol 90:85–90

    Article  Google Scholar 

  • Lenart-Boroń A et al (2014) The effect of industrial heavy metal pollution on microbial abundance and diversity in soils—a review. Actinomycetes 1012(1013):107–108

    Google Scholar 

  • Li T, Meng L, Herman U et al (2015) A survey of soil enzyme activities along major roads in Beijing: the implications for traffic corridor green space management. Int J Environ Health Res 12(10):12475–12488

    Article  Google Scholar 

  • Liu S, Xia X, Yang L et al (2010) Polycyclic aromatic hydrocarbons in urban soils of different land uses in Beijing, China: distribution, sources and their correlation with the city’s urbanization history. J Hazard Mater 177(1–3):1085–1092

    Article  Google Scholar 

  • Lorenz K, Kandeler E (2005) Biochemical characterization of urban soil profiles from Stuttgart, Germany. Soil Biol Biochem 37(7):1373–1385

    Article  Google Scholar 

  • Lorenz K, Lal R (2009) Biogeochemical C and N cycles in urban soils. Environ Int 35(1):1–8

    Article  Google Scholar 

  • Lorenz N, Hintemann T, Kramarewa T et al (2006) Response of microbial activity and microbial community composition in soils to long-term arsenic and cadmium exposure. Soil Biol Biochem 38(6):1430–1437

    Article  Google Scholar 

  • Megharaj M et al (2000) Influence of petroleum hydrocarbon contamination on microalgae and microbial activities in a long-term contaminated soil. Arch Environ Contam Toxicol 38(4):439–445

    Article  Google Scholar 

  • Mishra V et al (2015) Changes in observed climate extremes in global urban areas. Environ Res Lett 10(2)

    Google Scholar 

  • Moriyama M, Numata H (2015) Urban soil compaction reduces cicada diversity. Zoological Lett 1(1):1

    Article  Google Scholar 

  • Nachtergaele F (2005) The “soils” to be classified in the World Reference Base for soil resources. Eurasian Soil Sci 38:13–19

    Google Scholar 

  • Niepceron M et al (2013) GammaProteobacteria as a potential bioindicator of a multiple contamination by polycyclic aromatic hydrocarbons (PAHs) in agricultural soils. Environ Pollut 180:199–205

    Article  Google Scholar 

  • Pedrini-Martha V, Sager M, Werner R, Dallinger R (2012) Patterns of urban mercury contamination detected by bioindication with terrestrial isopods. Arch Environ Contam Toxicol 63(2):209–219

    Article  Google Scholar 

  • Pickett ST et al (2011) Urban ecological systems: scientific foundations and a decade of progress. J Environ Manag 92(3):331–362

    Article  Google Scholar 

  • Pierre S et al (2016) Soil microbial nitrogen cycling and nitrous oxide emissions from urban afforestation in the New York City afforestation project. Urban For Urban Green 15:149–154

    Article  Google Scholar 

  • Pouyat R et al (2002) Soil carbon pools and fluxes in urban ecosystems. Environ Pollut 116:107–118

    Article  Google Scholar 

  • Pouyat RV et al. (2003) Soil carbon in urban forest ecosystems. The potential of US forest soils to sequester carbon and mitigate the greenhouse effect, 347–362

    Google Scholar 

  • Prokof’eva TV et al (2014) Inclusion of soils and soil-like bodies of urban territories into the Russian soil classification system. Eurasian Soil Sci 47(10):959–967

    Article  Google Scholar 

  • Puskás I, Farsang A (2009) Diagnostic indicators for characterizing urban soils of Szeged, Hungary. Geoderma 148(3–4):267–281

    Article  Google Scholar 

  • Raciti SM et al (2011) Denitrification in suburban lawn soils. J Environ Qual 40(6):1932–1940

    Article  Google Scholar 

  • Rai PK (2016) Biodiversity of roadside plants and their response to air pollution in an Indo-Burma hotspot region: implications for urban ecosystem restoration. J Asia Pacific Biodivers 9(1):47–55

    Article  Google Scholar 

  • Rajapaksha RMCP, Tabor-Kapłon MA, Bååth E (2004) Metal toxicity affects fungal and bacterial activities in soil differently. Appl Environ Microbiol 70:2966–2973

    Article  Google Scholar 

  • Rapoport EH (1993) The process of plant colonization in small settlements and large cities. In: Humans as components of ecosystems. Springer, New York, pp 190–207

    Chapter  Google Scholar 

  • Rees WE (1997) Urban ecosystems: the human dimension. Urban Ecosyst 1(1):63–75

    Article  Google Scholar 

  • Riber L et al (2014) Exploring the immediate and long-term impact on bacterial communities in soil amended with animal and urban organic waste fertilizers using pyrosequencing and screening for horizontal transfer of antibiotic resistance. FEMS Microbiol Ecol 90(1):206–224

    Article  Google Scholar 

  • Rizzo L et al (2013) Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci Total Environ 447:345–360

    Article  Google Scholar 

  • Sarah P, Zhevelev HM, Oz A (2016) Human activities modify soil properties in urban parks: a case study of Tel Aviv-Jaffa. J Soils Sediments:1–10. doi:10.1007/s11368-016-1458-6

  • Sauvé S et al (1999) Nitrification potential in field-collected soils contaminated with Pb or Cu. Appl Soil Ecol 12(1):29–39

    Article  Google Scholar 

  • Scharenbroch BC, Lloyd JE, Johnson-Maynard JL (2005) Distinguishing urban soils with physical, chemical, and biological properties. Pedobiologia 49(4):283–296

    Article  Google Scholar 

  • Schloter M, Dilly O, Munch JC (2003) Indicators for evaluating soil quality. Agric Ecosyst Environ 98(1):255–262

    Article  Google Scholar 

  • Sjöman H, Morgenroth J, Sjöman JD et al (2016) Diversification of the urban forest—can we afford to exclude exotic tree species? Urban For Urban Green 18:237–241

    Article  Google Scholar 

  • Steinmann M, Stille P (1997) Rare earth element behaviour and Pb, Sr, Nd isotope systematic in a heavy metal contaminated soil. Appl Geochem 12:607–623

    Article  Google Scholar 

  • Vakhlamova T et al (2016) Recreational use of urban and suburban forests affects plant diversity in a Western Siberian city. Urban For Urban Green 17:92–103

    Article  Google Scholar 

  • Vasenev V et al. (2015) Root and microbial respiration from urban, agricultural and natural soils within the Moscow megapolis. In: EGU general assembly conference abstracts, vol 17, p 150

    Google Scholar 

  • Wang Y et al (2007) The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicol Environ Saf 67(1):75–81

    Article  Google Scholar 

  • Wang J, Feng J, Yan Z (2015) Potential sensitivity of warm season precipitation to urbanization extents: modeling study in Beijing-Tianjin-Hebei urban agglomeration in China. J Geophys Res Atmos 120(18):9408–9425

    Article  Google Scholar 

  • Wieczorek K, Wyszkowska J, Kucharski J (2014) Influence of zinc, copper, nickel, cadmium and lead in soils on acid phosphatase activity. Fresenius Environ Bull 23(1A):274–284

    Google Scholar 

  • Wilcke W et al (1998) Urban soil contamination in Bangkok: heavy metal and aluminium partitioning in topsoils. Geoderma 86:211–228

    Article  Google Scholar 

  • Wu X et al (2016) Elevated soil CO2 efflux at the boundaries between impervious surfaces and urban greenspaces. Atmos Environ 141:375–378

    Article  Google Scholar 

  • Wyszkowska J et al (2013) Effect of cadmium, copper and zinc on plants, soil microorganisms and soil enzymes. J Elem 18(4)

    Google Scholar 

  • Wyszkowska J, Wieczorek K, Kucharski J (2016) Resistance of arylsulfatase to contamination of soil by heavy metals. Pol J Environ Stud 25(1)

    Google Scholar 

  • Yuan BC et al (2007) Microbial biomass and activity in salt affected soils under and conditions. Appl Soil Ecol 35:319–328

    Article  Google Scholar 

  • Zahran S et al (2013) Linking source and effect: resuspended soil lead, air lead, and children’s blood lead levels in Detroit, Michigan. Environ Sci Technol 47(6):2839–2845

    Article  Google Scholar 

  • Zelikow VD, Popkova VG (1962) Some features of soils of the parks, squares and streets of Moscow. Urb Dev Moscow 5:28–32 (Article in Russian)

    Google Scholar 

  • Zemlyanitsky LT (1963) Features of urban soils and soil-like substrates. Soil Sci 5:75–84 (Article in Russian)

    Google Scholar 

  • Zeng F et al (2009) Distribution of phthalate esters in urban soils of subtropical city, Guangzhou, China. J Hazard Mater 164(2–3):1171–1178

    Article  Google Scholar 

  • Zhevelev HM, Bar P (2016) Urban soil properties as affected by land use units and socio-economic levels—the case of the city of Tel-Aviv, Israel. Geogr Res Forum 32:28–45

    Google Scholar 

  • Zhu WX, Dillard ND, Grimm NB (2005) Urban nitrogen biogeochemistry: status and processes in green retention basins. Biogeochemistry 71(2):177–196

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Gorovtsov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gorovtsov, A., Rajput, V.D., Gorbov, S., Vasilchenko, N. (2017). Bioindication-Based Approaches for Sustainable Management of Urban Ecosystems. In: Singh, R., Kumar, S. (eds) Green Technologies and Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-50654-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50654-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50653-1

  • Online ISBN: 978-3-319-50654-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics